Особенности решения задач в эконометрике

Разделив на n и решая методом Крамера, получаем формулу для определения b:

Уравнение регрессии:

= -1,136 + 9,902z

2.2.2. Оценим тесноту связи между признаками у и х.

Т. к. уравнение у = а + bln x линейно относительно параметров а и b и его линеаризация не была связана с преобразованием зависимой переменной _у, то теснота связи между переменными у и х, оцениваемая с помощью индекса парной корреляции Rxy, также может быть определена с помощью линейного коэффициента парной корреляции ryz

среднее квадратическое отклонение z:

Значение индекса корреляции близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида = a + bz.

2.2.3 Оценим качество построенной модели.

Определим коэффициент детерминации:

т. е. данная модель объясняет 83,8% общей вариации результата у, на долю необъясненной вариации приходится 16,2%.

Следовательно, качество модели высокое.

Найдем величину средней ошибки аппроксимации Аi .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.2.4.Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,414%.

2.2.5.Оценим статистическую значимость полученного уравнения. Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т.е. полученное уравнение статистически незначимо. Примем α=0,05.

Найдем табличное (критическое) значение F-критерия Фишера:

Найдем фактическое значение F-критерия Фишера:

следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Построим уравнение регрессии на поле корреляции

2.3. Модель степенной парной регрессии.

2.3.1. Рассчитаем параметры а и b степенной регрессии:

Расчету параметров предшествует процедура линеаризации данного уравнения:

и замена переменных:

Y=lny, X=lnx, A=lna

Параметры уравнения:

Y=A+bX

определяются методом наименьших квадратов:

Рассчитываем таблицу 3.

Определяем b:

Уравнение регрессии:

Построим уравнение регрессии на поле корреляции:

2.3.2. Оценим тесноту связи между признаками у и х с помощью индекса парной корреляции Ryx.

Предварительно рассчитаем теоретическое значение для каждого значения фактора x, и , тогда:

Значение индекса корреляции Rxy близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида:

2.3.3.Оценим качество построенной модели.

Определим индекс детерминации:

R2=0,9362=0,878,

т. е. данная модель объясняет 87,6% общей вариации результата у, а на долю необъясненной вариации приходится 12,4%.

Качество модели высокое.

Найдем величину средней ошибки аппроксимации.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.3.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,438%.

2.3.5.Оценим статистическую значимость полученного уравнения.

Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05.

табличное (критическое) значение F-критерия Фишера:

фактическое значение F-критерия Фишера:

Таблица 3

x

y

X

Y

YX

X2

y2

Аi

1

5,3

18,4

1,668

2,912

4,857

2,781

338,56

15,93

2.47

6,12

13,44

2

15,1

22,0

2,715

3,091

8,391

7,370

484,00

25,19

-3,19

10,14

14,48

3

24,2

32,3

3,186

3,475

11,073

10,153

1043,29

30,96

1,34

1,80

4,15

4

7,1

16,4

1,960

2,797

5,483

3,842

268,96

18,10

-1,70

2,89

10,37

5

11,0

22,2

2,398

3,100

7,434

5,750

492,84

21,92

0,28

0,08

1,24

6

8,5

21,7

2,140

3,077

6,586

4,580

470,89

19,58

2,12

4,48

9,75

7

14,5

23,6

2,674

3,161

8,454

7,151

556,96

24,74

-1,14

1,30

4,84

8

10,2

18,5

2,322

2,918

6,776

5,393

342,25

21,21

-2,71

7,35

14,66

9

18,6

26,1

2,923

3,262

9,535

8,545

681,21

27,59

-1,49

2,22

5,71

10

19,7

30,2

2,981

3,408

10,157

8,884

912,04

28,29

1,91

3,63

6,31

11

21,3

28,6

3,059

3,353

10,257

9,356

817,96

29,28

-0,68

0,46

2,37

12

22,1

34,0

3,096

3,526

10,916

9,583

1156,00

29,75

4,25

18,03

12,49

13

4,1

14,2

1,411

2,653

3,744

1,991

201,64

14,23

-0,03

0,00

0,24

14

12,0

22,1

2,485

3,096

7,692

6,175

488,41

22,78

-0,68

0,46

3,06

15

18,3

28,2

2,907

3,339

9,707

8,450

795,24

27,40

0,80

0,65

2,85

сумма

212,0

358,5

37,924

47,170

121,062

100,003

9050,25

358,5

0,00

59,61

105,95

среднее

14,133

23,900

2,528

3,145

8,071

6,667

603,350

23,90

0,00

3,97

7,06

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы