Экономико-математические методы и прикладные модели
Функция f(X) называется целевой функцией, переменные X – управляемыми переменными, D – допустимым множеством и любой набор значений Y управляемых переменных, принадлежащий D (Y Î D), - допустимым решением задачи оптимизации.
Понятно, что искомая точка Y, в которой f(X) достигает своего экстремума, должна принадлежать пересечению области определения O функции f(X) и допустимого множест
ва D (YÎ O Ç D). Если множества O и D совпадают со всем пространством RN (O = D = RN), то такая задача называется задачей на безусловный экстремум. Если хотя бы одно из множеств O или D является собственным подмножеством пространства RN (O Ì RN , D Ì RN) или множества O и D пересекаются (O Ç D ¹ Æ), то такая задача называется задачей на условный экстремум, в противном случае (O Ç D = Æ) точка экстремума Y не существует. Подчеркнем один частный случай: если множества O и D пересекаются в одной точке Y, то эта точка Y является единственным допустимым решением.
Обычно в задаче условного экстремума задается не само допустимое множество решений D, а система соотношений, его определяющая,
yj (x1, х 2, х N) £ (=, ³) 0, j = 1, 2, … М,
т.е.
D = {X: yj (X) £ (=, ³) 0, j = 1, 2, . , M} Í RN,
или множество D может одновременно задаваться как в явном виде, т.е. допустимое решение Х должно принадлежать некоторой области P Ì RN, так и системой ограничений.
III. Методы линейного программирования.
3.1. Общая и типовая задача в линейном программировании.
Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.
В самом общем виде задача математически записывается так:
U = f(X) ® max; X Î W,
Где X = (Х1, Х2,…, Хn);
W – область допустимых значений переменных Х1, Х2,…, Хn;
f(X) – целевая функция.
Для того, чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать X() Î W такое, что f(X()) ³ f(X), при любом X Î W, или для случая минимизации - что f(X()) ≤ f(X), при любом X Î W.
Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешима, если целевая функция f(X) не ограничена сверху на допустимом множестве W.
Методы решения оптимизационных задач зависят как от вида целевой функции f(X), так и от строения допустимого множества W. Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.
В математическом программировании принято выделять следующие основные задачи в зависимости от вида целевой функции f(X) и от области W:
· задачи линейного программирования, если f(X) и W линейны;
· задачи целочисленного программирования, если ставится условие целочисленности переменных Х1, Х2,…, Хn;
· задачи нелинейного программирования, если форма f(X) носит нелинейный характер.
Задачи линейного программирования.
Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:
f(X) = å СjXj ® max(min);
å aij xj = bi, iÎI, IÍM = {1, 2,…m};
å aij xj £ bi, iÎM;
Xj³0, jÎJ, JÍN = {1, 2,…n}.
При этом система линейных уравнений и неравенств, определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией или критерием оптимальности.
Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.
Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:
1) если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
3) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
4) если некоторая переменная Хk не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными::
Xk = X`k – Xl, где l – свободный индекс, X`k ³ 0, Xk ³ 0.
3.2. Постановка задачи линейного программирования
Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них является, как правило, распределение ресурсов, находящихся у m производителей (поставщиков), но n потребителям этих ресурсов.
На автомобильном транспорте часто встречаются следующие задачи, относящиеся к транспортным:
· прикрепление потребителей ресурса к производителям;
· привязка пунктов отправления к пунктам назначения;
· взаимная привязка грузопотоков прямого и обратного направлений;
· отдельные задачи оптимальной загрузки промышленного оборудования;
· оптимальное распределение объемов выпуска промышленной продукции между заводами-изготовителями.
Транспортным задачам присущи следующие особенности:
· распределению подлежат однородные ресурсы;
· условия задачи описываются только уравнениями;
· все переменные выражаются в одинаковых единицах измерения;
· во всех уравнениях коэффициенты при неизвестных равны единице;
· каждая неизвестная встречается только в двух уравнениях системы ограничений.
Транспортные задачи могут решаться симплекс-методом.
3.3. Решение транспортной задачи
Мощности постав- щиков 140 | Мощности потребителей | U i | ||||
18 | 15 | 32 | 45 | 30 | ||
30 | 10 | 7/15 | 14 | 8/5 | 7/10 | 0 |
40 | 12 | 8 | 10 | 8/40 | 15 | 0 |
25 | 6/18 | 10 | 10 | 12 | 14/7 | -7 |
45 | 16 | 10 | 8/32 | 12 | 16/13 | -9 |
Vj | -1 | 7 | -1 | 8 | 7 |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Прогнозирование и регулирование развития производственной инфраструктуры
- Проверка адекватности выбранных моделей
- Программная реализация алгоритмов поиска в глубину и ширину в неориентированных графах
- Исследование модели развития покупательского спроса для предприятия, выпускающего определенный товар
- Управление предприятием
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели