Экономико-математические методы и прикладные модели
4. Задачи оптимизации на множестве этапов функционирования. Рассматривается функционирование объектов на некотором интервале времени, разбитом на несколько этапов. Качество управления на каждом этапе оценивается частным критерием, а на множестве этапов – общим векторным критерием. Примером может служить распределение квартального плана цеха по декадам. В каждой декаде необходимо обеспечить макс
имальную загрузку. В результате получится критерий максимизации загрузки в каждой декаде квартала.
Многокритериальные задачи можно также классифицировать по другим признакам: по вариантам оптимизации, по числу критериев, по типам критериев, по соотношениям между критериями, по уровню структуризации, наличию фактора неопределенности.
При разработке методов решения векторных задач приходится решать ряд специфических проблем.
Проблема нормализации возникает в связи с тем, что локальные критерии имеют, как правило, различные единицы и масштабы измерения, и это делает невозможным их непосредственное сравнение. Операция приведения критериев к единому масштабу и безразмерному виду носит название нормирования. Наиболее распространенными способами нормирования является замена абсолютных значений критериев их безразмерными относительными величинами
fr(X) = fr(X) ,
f*r
или относительными значениями отклонений от оптимальных значений критериев f*r
fr(X) = f*r - fr(X) ,
f*r
Проблема выбора принципа оптимальности связана с определением свойств оптимального решения и решением вопроса - в каком смысле оптимальное решение превосходит все остальные.
Проблема учета приоритета критериев встает, если локальные критерии имеют различную значимость. Необходимо найти математическое определение приоритета и степень его влияния на решение задачи.
Проблема вычисления оптимума возникает, если традиционные вычислительные схемы и алгоритмы непригодны для решения задач векторной оптимизации.
Решение перечисленных проблем идет в нескольких направлениях. Основные направления:
Методы, основанные на свертывании критериев в единый;
Методы, использующие ограничения на критерии;
Методы целевого программирования;
Методы, основанные на отыскании компромиссного решения;
Методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).
В методах, основанных на свертывании критериев, из локальных критериев формируется один. Наиболее распространенным является метода линейной комбинации частных критериев. Пусть задан вектор весовых коэффициентов критериев a = {a1,…,ar}, характеризующих важность соответствующего критерия, åar = 1, ar ³ 0 (r = 1,K). Линейная скаляризованная функция представляет собой сумму частных критериев, умноженных на весовые коэффициенты. Задача математического программирования становится однокритериальной и имеет вид
F° = åarfr(X) (max),
qi(X) £ bi (I = 1,M),
X ³ 0.
Критерии в свертке могут быть нормированы. Решение, полученное в результате оптимизации скаляризованного критерия эффективно.
К недостаткам метода можно отнести то, что малым приращениям коэффициентов соответствуют большие приращения функции, т.е. решение задачи неустойчиво, а также необходимость определения весовых коэффициентов.
Направление методов, использующих ограничения на критерии включает два подхода:
1) метод ведущего критерия;
2) методы последовательного применения критериев (метод последовательных уступок, метод ограничений).
В методе ведущего критерия все целевые функции кроме одной переводятся в разряд ограничений. Пусть g = (g2, g3,…, gк-1) – вектор, компоненты которого представляют собой нижние границы соответствующих критериев. Задача будет иметь вид
F = f1 (max)
fr ³ gr (r = 2,K),
qi (X) £ bi (I = 1,M),
X ³ 0.
Полученное этим методом решение может не быть эффективным, поэтому необходимо проверить его принадлежность области компромиссов.
Метод ведущего критерия применяется в таких задачах, как минимизация полных затрат при условии выполнения плана по производству различных видов продукции, максимизация выпуска комплектных наборов при ограничении на потребляемые ресурсы.
Алгоритм метода последовательных уступок:
1. Критерии нумеруются в порядке убывания важности.
2. Определяется значение f*1. Лицом, принимающим решение, устанавливается величина уступки D1 по этому критерию.
3. Решается задача по критерию f2 с дополнительным ограничением f1(X) ³ f*1 - D1.
Далее пункты 2 и 3 повторяются для критерия f2,…, fk.
Полученное решение не всегда принадлежит области компромиссов.
При решении задач методами целевого программирования предполагается приближение значения каждого критерия к определенной величине fr, т.е. достижение определенной цели. В самом общем виде задача целевого программирования формулируется как задача минимизации сумм отклонений целевых функций от целевых значений с нормированными весами.
d(F(X), F) = ( å wR êfR (X) - f R êp) (min),
где F = {f1, , fR} - вектор целевых значений,
W = {w1, ., wR} - вектор весов, обычно å wR = 1, wR ³ 0
(r = 1, K), значения p находятся в пределах 1 £ p £ ¥,
d(.) – расстояние (мера отклонения) между F(X) и F.
Во многих случаях применения целевого программирования полагают p = 1. Например, в линейном целевом программировании функции fR (X) (r=1, K) и qi (X) (i = 1,M) линейны и нет целочисленных переменных.
В задачах лексикографического программирования критерии строго упорядочены по важности, так что при сравнении пары решений в первую очередь используется критерий f1 и лучшим считается то решение, для которого значение этого критерия больше, если значения первого критерия для обоих решений оказываются равными, то применяется критерий f2 и предпочтение отдается тому решению, для которого значение f2 больше, ели и второй критерий не позволяет определить лучшее решение, то привлекается f3 и т.д. Учет информации о важности критериев осуществляется путем поэтапного решения задачи минимизации отклонений критериев от целевых значений. Часто в лексикографическом программировании F = F, p = 1 .
Точка F обычно не принадлежит области допустимых значений и поэтому ее иногда называют идеальной или утопической точкой. В некоторых методах целевого программирования допускается задание утопического множества, как пример при построении архимедовой задачи.
Другие рефераты на тему «Экономико-математическое моделирование»:
- Коэффициент детерминации. Значимость уравнения регрессии
- Анализ различных методов оценки статистических показателей при типическом отборе
- Эконометрическое моделирование финансового рынка
- Классическое вариационное исчисление. Уравнение Эйлера. Задача вариационного исчисления с подвижными границами
- Экономико-математическое моделирование и прогнозирование в спортивной индустрии
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели