Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования
В имитационных моделях реальный процесс разворачивается в машинном времени, и прослеживаются результаты случайных воздействии на него, например, организация производственного процесса.
В детерминированных моделях неизвестные факторы не учитываются. Несмотря на кажущуюся простоту этих моделей, к ним сводятся многие практические задачи, в том числе большинство экономических задач. По виду цел
евой функции и ограничений детерминированные модели делятся на: линейные, нелинейные, динамические и графические.
Нелинейные модели - это модели, в которых либо целевая функция, либо какое-нибудь из ограничений (либо все ограничения) нелинейные по управляющим переменным. Для нелинейных моделей нет единого метода расчета. В зависимости от вида нелинейности, свойств функции и ограничений можно предложить различные способы решения. Однако может случится и так, что для поставленной нелинейной задачи вообще не существует метода расчета. В этом случае задачу следует упростить, либо сведя ее к известным линейным моделям, либо просто линеаризовав модель.
В динамических моделях учитывается фактор времени. Критерий оптимальности в динамических моделях может быть самого общего вида (и даже вообще не быть функцией), однако для него должны выполняться определенные свойства. Расчет динамических моделей сложен, и для каждой конкретной задачи необходимо разрабатывать специальный алгоритм решения. По существу метод динамического программирования представляет собой алгоритм определения оптимальной стратегии управления на всех стадиях процесса.
Графические модели - используются тогда, когда задачу удобно представить в виде графической структуры.
В линейных моделях целевая функция и ограничения линейны по управляющим переменным. Построение и расчет линейных моделей являются наиболее развитым разделом математического моделирования, поэтому часто к ним стараются свести и другие задачи либо на этапе постановки, либо в процессе решения. К классическим задачам линейного программирования относятся задачи на составление оптимального плана перевозок (транспортная задача), задачи о загрузке оборудования, о смесях, о раскрое материалов, об ассортименте продукции, о размещении производства и управлении производственными запасами, задачи о питании, о рациональном использовании сырья и материалов и др. Для линейных моделей любого вида и достаточно большой размерности известны следующие стандартные методы решения:
1. Графический метод;
2. Симплекс-метод;
3. Двухэтапный метод. Он позволяет получить сначала стартовую точку, т.е. начальное допустимое решение, а затем оптимальное решение. В ограничения вводятся искусственные переменные необходимые для получения стартовой точки;
4. Метод больших штрафов;
По смыслу значительной части экономических задач, относящихся к задачам линейного программирования, компоненты решения должны выражаться в целых числах, т.е. быть целочисленными. Методы целочисленной оптимизации можно разделить на три основные группы: а) методы отсечения; б) комбинаторные методы; в) приближенные методы.
Метод Гомори. Сущность метода состоит в том, что сначала задача решается без условия целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:
ü оно должно быть линейным;
ü должно отсекать найденный оптимальный нецелочисленный план;
ü не должно отсекать ни одного целочисленного плана.
Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением.
Далее задача решается с учетом нового ограничения. После этого в случае необходимости добавляется еще одно ограничение и т. д.
Метод ветвей и границ — один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов. Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.
1. ПОСТАНОВКА ЗАДАЧИ ОПЕРАЦИОННОГО ИССЛЕДОВАНИЯ
При выпуске двух видов химических удобрений ("Флора" и "Росток") предприятие использует три вида сырья: азотную кислоту, аммиак и калийную соль. Расход каждого вида сырья на выпуск 1 т удобрений, объем запасов сырья (на сутки) и прибыль от продажи 1 т каждого вида удобрений приведены в таблице:
Виды сырья |
Запас (т) |
Расход сырья на 1 т удобрений (т) | |
"Флора" |
"Росток" | ||
Азотная кислота Аммиак Калийная соль |
900 1000 800 |
1 2,5 3 |
4 2 2 |
Прибыль (ден.ед.) |
5 |
8 |
Определить план производства удобрений каждого вида, при котором прибыль предприятия будет максимальной.
2. ПОСТРОЕНИЕ БАЗОВОЙ АНАЛИТИЧЕСКОЙ МОДЕЛИ
Для построения математической модели данной задачи введем переменные и с их помощью запишем систему ограничений и целевую функцию. Предположим:
X1−количество выпускаемого удобрения «Флора» (в тоннах);
Х2−количество выпускаемого удобрения «Росток» (в тоннах);
Составим ограничения, учитывающие условие задачи.
Составим ограничение на расход азотной кислоты. На выпуск одной тонны удобрения «Флора» расходуется 1 т азотной кислоты, значит,
расход азотной кислоты на выпуск всего количества удобрения «Флора» составит X1 т. На выпуск удобрения «Росток» будет израсходовано 4X2т азотной кислоты. Таким образом, общий расход азотной кислоты составит
X1 + 4X2т. Эта величина не должна превышать 900 т, так как запас азотной кислоты составляет 900т. Поэтому можно записать следующее ограничение:
X1+4X2 ≤ 900
Аналогично можно составить ограничение на аммиак:
2,5X1+2X2≤ 1000
и на расход калийной соли:
3Х1+2Х2≤800
Кроме того, переменные X1 иX2 по своему физическому смыслу не могут принимать отрицательных значений, так как они обозначают количество тонн удобрений. Поэтому необходимо указать ограничения неотрицательности:
X1>0, X2>0.
В данной задаче требуется определить количество тонн выпускаемых удобрений, при котором прибыль от их производства будет максимальной. Прибыль от выпуска одной тонны удобрения «Флора» составляет 5 ден. ед.; значит, прибыль от выпуска удобрения «Флора» составит 5X1 ден. ед. Прибыль от выпуска удобрения «Росток» составит 8X2 ден. ед. Таким образом, общая прибыль от выпуска всех изделий составит 5X1 + 8X2 ден. ед. Требуется найти такие значения переменных X1 иX2, при которых эта величина будет максимальной. Таким образом, целевая функция для данной задачи будет иметь следующий вид:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели