Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления прогр

амм на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Особенности исследования операций.

1. Системный подход к анализу поставленной проблемы. Системный анализ является основным методологическим принципом исследования операций, который состоит в том, что любая задача, какой бы частной она не казалась, рассматривается сточки зрения ее влияния на критерий функционирования всей системы.

2. Для исследования операций характерно, что при решении каждой проблемы возникают все новые и новые задачи. Если сначала ставится узкие цели, применение операционных методов неэффективно. Наибольший эффект может быть достигнут только при непрерывном исследовании, обеспечивающем преемственность в переходе от одной задачи к другой.

3. Одной из существенных особенностей исследования операций является стремление найти оптимальное решение поставленной задачи. Однако часто такое решение оказывается недостижимым из-за ограничений, накладываемых имеющимися в наличии ресурсами или уровнем современной науки. Например, для комбинаторных задач, в частности задач календарного планирования при числе станков белее 4 оптимальное решение при современном уровне развития математики оказывается возможным найти лишь простым перебором вариантов. Однако даже при небольших n число возможных вариантов оказывается настолько велико, что перебор всех вариантов при существующих ограничениях на быстродействие ЭВМ и допустимое машинное время практически немыслимы, тогда приходится ограничиваться поиском достаточно хорошего или субоптимального решения.

4. Особенность операционных исследований состоит и в том, что они проводятся комплексно, по многим направлениям. Для проведения такого исследования создается операционная группа. В ее состав входят специалисты различных областей: инженеры, математики, экономисты, социологи, психологи.

В исследовании операций главная роль отводится математическому моделированию. В настоящее время математические модели применяются для анализа, прогнозирования и выбора оптимальных решений в различных областях экономики. Это планирование и оперативное управление производством, управление трудовыми ресурсами, управление запасами, распределение ресурсов, планировка и размещение объектов, руководство проектом, распределение инвестиций и т.п. Модели разрабатываются с целью оптимизации заданной целевой функции при некоторой совокупности ограничений. Для построения математической модели необходимо иметь строгое представление о цели функционирования исследуемой системы и располагать информацией об ограничениях, которые представляют область допустимых значений управляющих переменных. Анализ модели должен привести к определению наилучшего управляющего воздействия на объект управления при выполнении всех установленных ограничений. В основе построения математических моделей лежит допущение о том, что все переменные, параметры и ограничения, а также целевая функция, количественно измеримы.

Кроме математических моделей в исследовании операций используются также имитационные и эвристические модели. Для построения имитационных моделей не требуется использование математических функций, явным образом связывающих те или иные переменные, и эти модели, как правило, позволяют имитировать поведение очень сложных систем, для которых построение математических моделей и получение решений невозможно. Эвристические методы базируются на интуитивно или эмпирически выбираемых правилах, которые позволяют исследователю улучшить уже имеющееся решение. В литературе, посвященной вопросам экономико-математического моделирования, взависимости от учета различных факторов (времени, способов его представленияв моделях; случайных факторов и т.п.) выделяют, например, такие модели:

1. Детерминированый модель(линейная модель, нелинейная модель, динамическая модель, графическая модель);

2. Стохастический модель;

3. Неопределенный модель (теория игр, имитационные модели).

В стохастических моделях неизвестные факторы - это случайные величины, для которых известны функции распределения и различные статистические характеристики (математическое ожидание, дисперсия, среднеквадратическое отклонение и т.п.). Среди стохастических характеристик можно выделить:

*модели стохастического программирования, в которых либо в целевую функцию, либо в ограничения входят случайные величины;

*модели теории случайных процессов, предназначенные для изучения процессов, состояние которых в каждый момент времени является случайной величиной;

*модели теории массового обслуживания, в которой изучаются многоканальные системы, занятые обслуживанием требований.

Также к стохастическим моделям можно отнести модели теории полезности, поиска и принятия решений.

Для моделирования ситуаций, зависящих от факторов, для которых невозможно собрать статистические данные и значения которых не определены, используются модели с элементами неопределенности.

В моделях теории игр задача представляется в виде игры, в которой двое (или более) сторон преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнера. В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. К ним относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Во всех этих примерах конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера, и учитывать неизвестные заранее решения, которые эти партнеры будут принимать.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы