Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования

Определим ценность имеющихся ресурсов. Ценность ресурса – это увеличение значения целевой функции (прибыли) при увеличении запаса ресурса на единицу (или, соответственно, снижение целевой функции при уменьшении запаса ресурса на единицу).

Ценности ресурсов определяются по симплекс-таблице, соответствующей оптимальному решению. Ценности ресурсов представляют собой коэффициенты E-строки при о

статочных переменных, соответствующих остаткам ресурсов.

В нашем случае ценность азотной кислоты равна 1,4 ден. ед./т, ценность калийной соли - 1,2 ден. ед./т. Это означает, например, что увеличение запаса азотной кислоты на единицу (т.е. на 1 т) приводит к увеличению прибыли предприятия в среднем на 1,4 ден. ед. Например, если запас азотной кислоты увеличится на 100 т (т.е. составит 1000 т), то прибыль составит примерно 2220 + 1,4*100 =2360 ден. ед. Снижение запаса азотной кислоты приведет к соответствующему снижению прибыли.

Ценность недефицитного ресурса всегда равна нулю. В данном примере ценность аммиака равна нулю, так как увеличение его запаса не приводит к увеличению прибыли, а снижение (не более чем на 270 кг) - не приводит к снижению прибыли.

Ценность ресурса показывает максимальную (предельную) цену, по которой выгодно закупать ресурсы. Например, в рассматриваемой задаче предприятию выгодно закупать азотную кислоту по цене не более 1,4 ден. ед./т, калийную соль - по цене не более 1,2 ден. ед./т. Закупка ресурса по цене, превышающей его ценность, означает, что затраты предприятия на закупку ресурса превышают прибыль от его использования.

6. ПРОВЕРКА ОПТИМАЛЬНОГО РЕШЕНИЯ В СРЕДЕ MS EXCEL С ИСПОЛЬЗОВАНИЕМ ПРОГРАМНОЙ НАДСТРОЙКИ «ПОИСК РЕШЕНИЯ» (ПАКЕТ «SOLVER»)

Для решения оптимизационных задач в среде MS Excel используется инструмент «Поиск решения» (пункт меню «Данные Поиск решения»).

Для решения задачи необходимо выполнить следующие этапы:

ü Внести исходные данные;

ü Определить ячейки, в которые будет помещен конечный результат (изменяемые ячейки);

ü Внести в определенную ячейку формулу для расчета целевой функции;

ü Внести в ячейки формулы для расчета ограничений.

В результате получается следующее:

ü Вызвать надстройку «Поиск решения» и, определив для нее основные параметры, определить решение:

После того, как будут заполнены все основные формы, нажимаем кнопку «Выполнить», после чего появится диалоговое окно «Результаты поиска решений».Решение задачи выглядит следующим образом:

1.Для повторного решения задачи оптимизации следует удалить содержимое ячеек с элементами решения и сбросить полученные результаты (клавиша «Delete»).

2.Фрагмент рабочего листа MS Excel с результатами решения задачи оптимизации сохраняется и переносится в документ MS Word (например, с помощью команд «Ctrl&PrintScreen» в среде MS Excel и «Вставить» в документе MS Word или с помощью команд «Копировать» и «Вставить», расположенных на панели инструментов во всех приложениях пакета MS Office).

Оптимальное решение, полученное с помощью двухэтапного метода, совпадает с решением, полученным в среде MS Excel с помощью программной надстройки «Поиск решения».

7. ПРИМЕРЫ ПОСТАНОВОК, ФОРМАЛИЗАЦИИ И РЕШЕНИЯ ПЕРСПЕКТИВНЫХ ОПТИМИЗАЦИОННЫХ УПРАВЛЕНЧЕСКИХ ЗАДАЧ

Одним из методов решения задач линейного программирования является графический метод, применяемый для решения тех задач, в которых имеются только две переменные, поскольку в таких случаях имеется возможность графически изобразить область допустимых решений (ОДР).

Примечание. Графический метод может применяться также для решения задач с любым количеством переменных, если возможно выразить все переменные задачи через какие-либо две переменные.

ОДР – это множество значений переменных X1,X2, .,Xn, удовлетворяющих ограничениям задачи. Для задач с двумя переменными ОДР представляет собой множество точек (X1; X2), т.е. некоторую область на плоскости (обычно – многоугольник). Для задач с тремя переменными ОДР представляет собой многогранник в пространстве, для задач с большим количеством переменных – некоторую область многомерного пространства. Можно доказать, что экстремум (минимум или максимум) целевой функции всегда достигается в одной из угловых точек ОДР. Другими словами, оптимальное решение всегда находится в угловой точке ОДР. Поэтому задачу линейного программирования с двумя переменными можно решить следующим образом:

ü построить ОДР на плоскости в системе координат (X1; X2),

ü определить все угловые точки ОДР,

ü вычислить значения целевой функции в этих точках и выбрать оптимальное решение.

Решим графическим методом следующую задачу: предприятие химической промышленности выпускает соляную и серную кислоту. Выпуск одной тонны соляной кислоты приносит предприятию прибыль в размере 25 ден.ед., выпуск одной тонны серной кислоты – 40 ден.ед. Для выполнения государственного заказа необходимо выпустить не менее 200 т соляной кислоты и не менее 100 т серной кислоты. Кроме того, необходимо учитывать, что выпуск кислот связан с образованием опасных отходов. При выпуске одной тонны соляной кислоты образуется 0,5 т опасных отходов, при выпуске одной тонны серной кислоты – 1,2 т опасных отходов. Общее количество опасных отходов не должно превышать 600 т, так как превышение этого ограничения приведет к выплате предприятием крупного штрафа.

Требуется определить, сколько соляной и серной кислоты должно выпустить предприятие, чтобы получить максимальную прибыль.

Составим математическую модель задачи. Для этого введем переменные. Обозначим через X1 количество выпускаемой соляной кислоты (в тоннах), через X2 – количество серной кислоты (в тоннах).

Составим ограничения, связанные с необходимостью выполнения государственного заказа. Предприятию необходимо выпустить не менее 200т. соляной кислоты. Это ограничение можно записать следующим образом: X1 ≥ 200. Аналогично составим ограничение, устанавливающее, что предприятие должно выпустить не менее 100т. серной кислоты: X2 ≥ 100.

Составим ограничение на опасные отходы. При выпуске одной тонны соляной кислоты образуется 0,5т. опасных отходов; значит, общее количество опасных отходов при выпуске соляной кислоты составит 0,5·X1 т. При выпуске серной кислоты образуется 1,2·X2 т опасных отходов. Таким образом, общее количество опасных отходов составит 0,5·X1 + 1,2·X2 т. Эта величина не должна превышать 600 т. Поэтому можно записать следующее ограничение: 0,5·X1 + 1,2·X2 ≤ 600.

Кроме того, переменные X1 и X2 по своему физическому смыслу не могут принимать отрицательных значений, так как они обозначают количество выпускаемых кислот. Поэтому необходимо указать ограничения неотрицательности): X1 ≥ 0, X2 ≥ 0.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы