Регрессионный анализ. Парная регрессия

Значение t-статистики сравнивается с табличным значением tg/2(n-1) - g/2-процентной точка распределения Стьюдента с (n-1) степенями свободы.

Если |t| < tg/2(n-1) – гипотеза Н0 не отвергается (обратить внимание: не «верна», а «не отвергается»), т. е. мы считаем, что с вероятностью 1-g можно утверждать, что a = 0.

В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1. >Аналогично для коэффициента b формулируем гипотезу Н0: b = 0, т. е. переменная, выбранная нами в качестве фактора, на самом деле никакого влияния на отклик не оказывае.

Для проверки этой гипотезы, с заданным уровнем значимости g, рассчитывается t-статистика:

и сравнивается с табличным значением tg/2(n-1).

Если |t| < tg/2(n-1) – гипотеза Н0 не отвергается, т. е. мы считаем, что с вероятностью 1-g можно утверждать, что b = 0.

В противном случае гипотеза Н0 отвергается, принимается гипотеза Н1.

7. Автокорреляция остатков.

1. Примеры автокорреляции.

Возможные причины:

1) неверно выбрана функция регрессии;

2) имеется неучтенная объясняющая переменная (переменные)

2. Статистика Дарбина-Уотсона

Очевидно:

0 £ DW £ 4

Если DW близко к нулю, это позволяет предполагать наличие положительной автокорреляции, если близко к 4 – отрицательной.

Распределение DW зависит от наблюденных значений, поэтому получить однозначный критерий, при выполнении которого DW считается «хорошим», а при невыполнении - «плохим», нельзя. Однако, для различных величин n и g найдены верхние и нижние границы, DWL и DWU, которые в ряде случаев позволяют с уверенностью судить о наличии (отсутствии) автокорреляции в модели. Правило:

1) При DW < 2:

а) если DW < DWL – делаем вывод о наличии положительной автокорреляции (с вероятностью 1-g);

б) если DW > DWU – делаем вывод об отсутствии автокорреляции (с вероятностью 1-g);

в) если DWL £ DW £ DWU – нельзя сделать никакого вывода;

2) При DW > 2:

а) если (4 – DW) < DWL – делаем вывод о наличии отрицательной автокорреляции (с вероятностью 1-g);

б) если (4 – DW) > DWU – делаем вывод об отсутствии автокорреляции (с вероятностью 1-g);

в) если DWL £ (4 – DW) £ DWU – нельзя сделать никакого вывода;

8. Гетероскедастичность остатков.

Возможные причины:

- ошибки в исходных данных;

- наличие закономерностей;

Обнаружение – возможны различные тесты. Наиболее простой:

(упрощенный тест Голдфелда – Куандта)

1) упорядочиваем выборку по возрастанию одной из объясняющих переменных;

2) формулируем гипотезу Н0: остатки гомоскедастичны

3) делим выборку приблизительно на три части, выделяя k остатков, соответствующих «маленьким» х и k остатков, соответствующих «большим» х (k»n/3);

4) строим модели парной линейной регрессии отдельно для «меньшей» и «большей» частей

5) оцениваем дисперсии остатков в «меньшей» (s21) и «большей» (s21) частях;

6) рассчитываем дисперсионное соотношение:

7) определяем табличное значение F-статистики Фишера с (k–m–1) степенями свободы числителя и (k - m - 1) степенями свободы знаменателя при заданном уровне значимости g

8) если дисперсионное соотношение не превышает табличное значение F-статистики (т. е., оно подчиняется F-распределению Фишера с (k–m–1) степенями свободы числителя и (k - m - 1) степенями свободы знаменателя), то гипотеза Н0 не отвергается - делаем вывод о гомоскедастичности остатков. Иначе – предполагаем их гетероскедатичность.

Метод устранения: взвешенный МНК.

Идея: если значения х оказывают какое-то воздействие на величину остатков, то можно ввести в модель некие «весовые коэффициенты», чтобы свести это влияние к нулю.

Например, если предположить, что величина остатка ei пропорциональна значению xi (т. е., дисперсия остатков пропорциональна xi2), то можно перестроить модель следующим образом:

т. е. перейдем к модели наблюдений

где

Таким образом, задача оценки параметров уравнения регрессии методом наименьших квадратов сводится к минимизации функции:

или

где - весовой коэффициент.

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы