Свойства линейной прогрессии

1. Теоретический вопрос

Свойства линейной прогрессии

1. Прямая регрессии всегда проходит через центр рассеивания корреляционного поля, т.е. через точку ().

2. Из выражения следует, что угловой коэффициент b1 выражается через коэффициент корреляции

rxy и среднее квадратичное отклонение фактора и отклика, т.е. знак b1 совпадает со знаком коэффициента корреляции (т.к. всегда).

Если rxy>0, то b1>0, a острый, связь между х и у – прямая, т.е. с ростом х у возрастает.

Если rxy<0, то b1<0, a тупой связь между х и у обратная.

2. Задача

Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.

X=2

1. Найдем производную функции ,

2. Найдем эластичность , тогда

3. Коэффициент эластичности для точки прогноза:

X=2

Коэффициент эластичности показывает, что при изменении фактора X =2 на 1% показатель Y увеличивается на 5%.

3. Задача

Для представленных данных выполнить следующее задание:

1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.

Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными:

№ завода

Фактор

Уровень рентабельности, %

Фондоотдача, грн

Производительность труда, грн

1

3447

33,4

12,3

 

2

3710

29,1

14,7

 

3

2827

25,3

10,9

 

4

2933

27,1

16,1

 

5

5428

43,3

22,3

 

6

5001

47,2

21,1

 

7

6432

49,3

24,3

 

8

4343

35,7

13,3

 

9

7321

45,8

27,6

 

10

6432

43,4

28,3

 

11

6003

42,1

25,1

 

12

5342

40,1

20,2

 

13

4341

33,3

13,7

 

14

5040

41,2

19,9

 

15

4343

39,7

14,2

 

Нелинейную зависимость принять

Обозначим производительность труда (грн) – Х, уровень рентабельности (%) – У. Построим линейную зависимость показателя от фактора. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений. Минимальное значение Х=2827, максимальное значение Х=7321, значит, производительность труда изменяется от 2827 до 7321 грн. Минимальное значение У=10.9, максимальное значение У=28.3, уровень рентабельности изменяется от 10.9 до 28.3%. Среднее значение . Среднее значение производительности труда составляет 4790,53 грн, среднее значение уровня рентабельности составляет 19.41%. Дисперсия = 1748769,231, = 32,09. Среднеквадратическое отклонение 1322.41, значит среднее отклонение производительности труда от среднего значения, составляет 1322.41 грн., 5,66, значит среднее отклонение уровня рентабельности от среднего значения, составляет 5.66%. Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) – нанесем точки на график. Точка с координатами =(4964; 19.41) называется центром рассеяния. По виду корреляционного поля можно предположить, что зависимость между y и x линейная. Для определения тесноты линейной связи найдем коэффициент корреляции: =0,9 Так как то линейная связь между Х и У достаточная. Пытаемся описать связь между х и у зависимостью. Параметры b0, b1 находим по МНК. Так как b1>0, то зависимость между х и y прямая: с ростом производительности труда уровень рентабельности возрастает. Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы