Линейное программирование как метод оптимизации

Так, по оценкам американских экспертов, около 75% от общего числа применяемых оптимизационных методов приходится на линейное программирование. Около четверти машинного времени, затраченного в последние годы на проведение научных исследований, было отведено решению задач линейного программирования и их многочисленных модификаций.

Первые постановки задач линейного программирования были сформу

лированы известным советским математиком Л.В. Канторовичем, которому за эти работы была присуждена Нобелевская премия по экономике.

Значительное развитие теория и алгоритмический аппарат линейного программирования получили с изобретением и распространением ЭВМ и формулировкой американским математиком Дж. Дансингом симплекс-метода.

В развитие и совершенствование этих систем вложен труд и талант многих математиков, аккумулирован опыт решения тысяч задач. Владение аппаратом линейного программирования необходимо каждому специалисту в области математического программирования. Линейное программирование тесно связано с другими методами математического программирования (например, нелинейного программирования, где целевая функция нелинейная).

Задачи с нелинейной целевой функцией и линейными ограничениями называют задачами нелинейного программирования с линейными ограничениями. Оптимизационные задачи такого рода можно классифицировать на основе структурных особенностей нелинейных целевых функций. Если целевая функция Е - квадратичная функция, то мы имеем дело с задачей квадратичного программирования; если Е - это отношение линейных функций, то соответствующая задача носит название задачи дробно-линейного программирования, и т.д. Деление оптимизационных задач на эти классы представляет значительный интерес, поскольку специфические особенности тех или иных задач играют важную роль при разработке методов их решения.

1. Общая постановка задачи линейного программирования (ЛП)

Задача линейного программирования (ЛП) состоит в нахождении минимума (или максимума) линейной функции при линейных ограничениях.

Общая форма задачи имеет вид: найти \min схпри условиях

\begin{align*}& a_i x - b_i \geq 0, \quad i \in I_1, \\& a_i x - b_i = 0, \quad i \in I_2, \\& x_j \geq 0, \quad j \in J_1,\end{align*}

Где

\begin{align*}I_1 \cup I_2 & = \{ 1 , \ldots , m \} , \;I_1 \cap I_2 = \emptyset , \;J_1 \subset \{ 1, \ldots , n \} , \;x = ( x_1 , \ldots , x_n )^T , \\c & = ( c_1 , \ldots , c_n ) , \;a_i = (a_{i1} , \ldots , a_{in}) , \;i = 1 , \ldots , m .\end{align*}

Здесь и далее нам удобнее считать с и аі вектор - строками, а x и b= (b1, .,bm) T - вектор столбцами.

Наряду с общей формой широко используются также каноническая и стандартная формы. Как в канонической, так и в стандартной форме

J_1 = \{ 1, \ldots , n \}

т.е. все переменные в любом допустимом решении задачи должны принимать неотрицательные значения (такие переменные принято называть неотрицательные в отличие от так называемых свободных переменных, на область значений которых подобное ограничение не накладывается). Отличие же между этими формами состоит в том, что в одном случае I2 = 0, а в другом - I1 = 0.

Задача ЛП в канонической форме:

w = cx \rightarrow \min (2.1)

Ax = b (2.2)

x \geq 0. (2.3)

Задача ЛП в стандартной форме:

\begin{align*}w & = cx \rightarrow \min \\Ax & \geq b \\x & \geq 0.\end{align*}

В обоих случаях А есть матрица размерности m x n, i-я строка которой совпадает с вектором аi.

Задача ЛП в общей форме сводится (в определенном смысле) к задаче ЛП в канонической (стандартной) форме. Под этим понимается существование общего способа построения по исходной задаче (в общей форме) новой задачи ЛП (в нужной нам форме), любое оптимальное решение которой "легко" преобразуется в оптимальное решение исходной задачи и наоборот. (Фактически, связь между этими задачами оказывается еще более тесной). Тем самым мы получаем возможность, не теряя общности, заниматься изучением задач ЛП, представленных либо в канонической, либо в стандартной форме. Ввиду этого наши дальнейшие рассмотрения задач ЛП будут посвящены, главным образом, задачам в канонической форме.

2. Приведение задачи линейного программирования к стандартной форме

Любая задача линейного программирования приводится к стандартной (канонической) форме основной задачи линейного программирования, которая формулируется следующим образом: найти неотрицательные значения переменных X1, X2, Xn, удовлетворяющих ограничениям в виде равенств:

A11X1 + A12X2 + … + A1nXn = B1;

A21X1 + A22X2 + … + A2nXn = B2;

……………………………………

Am1X1 + Am2X2 + … + AmnXn = Bm;

Xj ≥ 0, j=1,…,n

и обращающих в максимум линейную функцию этих переменных:

E = C1X1 + C2X2 + … + CnXn Þ max

При этом также требуется, чтобы правые части равенств были неотрицательны, т.е. должны соблюдаться условия:

Bj ≥ 0, j=1,…,n

Приведение к стандартной форме необходимо, так как большинство методов решения задач линейного программирования разработано именно для стандартной формы. Для приведения к стандартной форме задачи линейного программирования может потребоваться выполнить следующие действия:

перейти от минимизации целевой функции к ее максимизации;

изменить знаки правых частей ограничений;

перейти от ограничений-неравенств к равенствам;

избавиться от переменных, не имеющих ограничений на знак.

Для решения нашей задачи воспользуемся симплекс-методом, так как этот метод предназначен для решения задач линейного программирования любой размерности.

3. Примеры экономических задач, приводящихся к задачам ЛП

Несмотря на требование линейности функций критериев и ограничений, в рамки линейного программирования попадают многочисленные задачи распределения ресурсов, управления запасами, сетевого и календарного планирования, транспортные задачи и прочие.

Рассмотрим некоторые из них.

Определение оптимального ассортимента. Имеются m видов ресурсов в количествах b1, b2,., bi, bm и n видов изделий. Задана матрица A=||aij||, i=1,.,m, j=1,.,n, где aij характеризует нормы расхода i-го ресурса на единицу j-го вида изделий. Эффективность производства j-го вида изделий характеризуется показателем Cj, удовлетворяющим условию линейности. Нужно определить такой план выпуска изделий (оптимальный ассортимент), при котором суммарный показатель эффективности будет наибольший.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы