Линейное программирование как метод оптимизации
X1 + X2 + X3 + 2X4 ≤ 3
X1 + 2X2 + 3X3 + X4 ≤ 7
X1, X2, X3, X4 ≥ 0
Составим двойственную задачу по следующей схеме:
число переменных в дв. задаче равно числу ограничений в исходной, а число ограничений в дв. равно числу переменных в исходной;
в дв. задаче меняется вид экстремума (min→max);
векторы правой части и коэффициентов целевой функции в дв
. задаче меняются местами: первый становится вектором коэффициентов целевой функции, а второй - вектором правой части в системе ограничений;
левая часть системы ограничений строится по транспонированной матрице (строки меняются со столбцами), которая умножается на вектор переменных двойственной задачи
знаки в системе ограничений двойственной задачи определяются знаками ограничений неотрицательности в исходной задаче.
g = 3Y1+7Y2 → min
Y1 + Y2 ≥ 9
Y1 + 2Y2 ≥ 14
Y1 + 3Y2 ≥ 15
2Y1 + Y2 ≥ 10
Y1, Y2 ≥ 0
б) Решим задачу графическим методом
в) Оптимальным планом задачи 2, решенной симплексным методом является:
Х2 = (0,2,1,0,0,0); F2 = 9*0+14*2+15*1+0 = 43
Используя 3 симплексную таблицу найдем оптимальный план двойственной задачи.
Из 1 теоремы двойственности следует что: Y=Cб*А - 1
Составим матрицу А из компонентов векторов входящих в оптимальный базис
1 |
1 | ||
2 |
3 |
А = Р2; Р3 =
Определим обратную матрицу А-1:
2 |
-1 | ||
-1 |
1 |
А-1 =Р5; Р6= = (12;
1)
Оптимальный план двойственности равен:
Y = (12, 1, 0, 0, 0, 0); G = 3*12+7*1 = 43
Подставим оптимальный план прямой задачи в систему ограничений
12+1 > 9
12+2*1 = 14
12+3*1 = 15
2*12+1 > 10
Первое ограничение двойственной задачи выполняется как строгое неравенство. Это означает, что двойственная оценка сырья, используемого на производство одного изделия 1 и 4 вида, выше цены этого изделия и, следовательно, выпускать изделия этих видов невыгодно. Его производство и не предусмотрено оптимальным планом прямой задачи. Второе и третье ограничения двойственной задачи выполняются как строгие равенства. Это означает, что двойственные оценки сырья, используемого для производства единицы соответственно изделий 2 и 3 вида, равны в точности их ценам. Поэтому выпускать эти два вида продукции по двойственным оценкам экономически целесообразно. Их производство и предусмотрено оптимальным планом прямой задачи.
Таким образом, двойственные оценки тесным образом связаны с оптимальным планом прямой задачи. Всякое изменение исходных данных прямой задачи может оказать влияние как на ее оптимальный план, так и на систему оптимальных двойственных оценок. Поэтому, чтобы проводить экономический анализ с использованием двойственных оценок, нужно знать их интервал устойчивости. К рассмотрению этого мы сейчас и перейдем.
Таким образом, получим тот же результат, который приведен в симплекс-таблице для оптимального решения прямой задачи.
Анализ сопоставления результатов, полученных при решении прямой и двойственной задачи, позволяет сформулировать интересный вывод.
На итерации, приводящей к оптимуму, Это равенство справедливо всегда и фактически соответствует оптимальным значениям переменных обеих задач.
Основная и двойственная к ней задачи образуют пару взаимно двойственных задач: двойственная задача к двойственной оказывается основной задачей. Т.е. если мы возьмем двойственную задачу и по теоремам двойственности перейдем ко второй двойственной задаче она окажется прямой задачей.
используя вторую теорему двойственности, найти решение исходной.
Значение линейной функции двойственной задачи от Y численно равно минимальному значению линейной функции исходной задачи
Пропустим процесс решения двойственной ЗЛП, записав только результаты:
Y1=12 Y2=1 Y3=0 min (φ) =43
Т.к max (f) =min (φ), решение исходной задачи уже известно. Остаётся только найти значения X1, X2, X3, при которых это значение достигается. Здесь мы применим вторую теорему двойственности, которая устанавливает следующее соответствие:
В нашем примере получается следующая система линейных уравнений:
Y1 + Y2 = 9
Y1 + 2Y2 = 14
Y1 + 3Y2 = 15
2Y1 + Y2 = 10
С= (3,7) y1=12 y2=1 т.к. у1>0 и y2>0, то
X1 + X2 + X3 + 2X4 =3
X1 + 2X2 + 3X3 + X4 =7
12+1≠ 9, х1=0
12+2*1=14 → х2≠ 0
12+3*1=15→ х3≠ 0
2*12+1≠10, х4=0
х2+х3=3 Х2*=2
2х2+3х3=7 Х3*=1
F = 9*0+14*2+15*1+0 = 43
6. Транспортная задача и её решение методом потенциалов
Исходные данные приведены в таблице 3, найти оптимальный план.
Таблица 3.
Мощность поставщиков |
Мощность потребителей |
18 90 | ||||
24 6 |
24 - |
18 - |
24 - | |||
48 |
6 |
5 _ |
4 _ |
3 18 |
4 24 |
0 6 |
42 |
18 12 |
3 6 |
2 24 |
5 _ |
5 _ |
0 12 |
18 |
- |
1 18 6 |
6 _ |
3 _ |
2 _ |
0 _ |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Модели и методы принятия решений
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Парная и множественная регрессия и корреляция
- Метод потенциалов для решения транспортной задачи в матричной форме. Задача оптимального распределения ресурсов
- Выборочные исследования в эконометрике
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели