Корреляционный анализ
Тогда
3. Сравнить расчетное значение рангового коэффициента корреляции(rф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.
Вывод:
1) т.к. rф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение мак
симального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;
2) т.к. rф = -0,13 < rst = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.
1.8Основные свойства коэффициентов корреляции
К основным свойствам коэффициента корреляции необходимо отнести следующие:
- коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;
- значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от —1 до +1, т.е. -1 < r < 1;
- при независимом варьировании признаков, когда связь между ними отсутствует, r = 0;
- при положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;
- при отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;
- чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;
- только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f = n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции. [2]
1.9Проверка значимости коэффициентов корреляции
Для проверки значимости коэффициентов корреляции чаще всего используют распределение Стьюдента и условие:
, f = N – 2, α = 0,05.
Если условие выполняется, то гипотеза об отсутствии корреляционной связи принимается[5].
1.10 Критические значения коэффициента парной корреляции
Таблица 3 - Критические значения коэффициента парной корреляции при α=0,05
Число степеней свободы f | Критиче-ское значение r | Число степеней свободы f | Критиче-ское значение r | Число степеней свободы f | Критиче- ское значение r |
1 2 3 4 5 6 7 8 | 0,997 0,950 0,878 0,811 0,754 0,707 0,666 0,632 | 9 10 11 12 13 14 15 16 | 0,602 0,576 0,553 0,532 0,514 0,497 0,482 0,468 | 17 18 19 20 30 50 80 100 | 0,456 0,444 0,433 0,423 0,349 0,273 0,217 0,195 |
Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в таблице 3. Для пользования этой таблицей нужно знать число степеней свободы f = N – 2 и выбрать определенный уровень значимости, например равный 0,05. Такое значение уровня значимости называют еще 5%-ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы Р = 1 – α = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.
В практических исследованиях 5%-ный уровень риска применяется наиболее часто. Но экспериментатор всегда свободен в выборе уровня значимости, и возможны ситуации, в которых, например, требуется 1%-ный уровень риска. При этом возрастает надежность ответа. Проверка гипотезы сводится к сравнению абсолютной величины коэффициента парной корреляции с критическим значением. Если экспериментально найденное значение r меньше критического, то нет оснований считать, что имеется тесная линейная связь между параметрами, а если больше или равно, то гипотеза о корреляционной линейной связи не отвергается[6].
2. РЕШЕНИЕ ЗАДАЧИ
2.1 Условие задачи
Рассчитать полным факторным экспериментом влияние давления 5-20 МПа, жирности 4-2,5м.д. и кислотности 14-20°Т на качество продукции.
Таблица 1 – Условие задачи
Фактор | Номер фактора | Верхнее значение | Нижнее значение |
Давление |
| 20 | 5 |
Жирность |
| 4 | 2,5 |
Кислотность |
| 20 | 14 |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Основы практического использования прикладного регрессионного анализа
- Разработка системы учета и прогнозирования ежедневных поступлений страховых взносов на обязательное пенсионное страхование
- Моделирование и прогнозирование естественного прироста населения в РФ
- Модель развития экономики Украины
- Структура эконометрики
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели