Корреляционный анализ

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

Для проверки однородности дисперсии был выбран критерий Кохрена. Для этого рассчитываем дисперсию в каждом опыте по формуле:

.

Находим:

Условия проверки однородности дисперсий по критерию Кохрена:

для уровня значимости 0,05 равна 0,32.

<, следовательно, дисперсия однородна и измерения в разных сериях равноточны.

2.5 Коэффициенты уравнения регрессии

Находим коэффициенты уравнения регрессии.

.

Находим:

Следовательно, уравнение регрессии примет вид:

2.6 Дисперсия воспроизводимости

Вычисляем значение дисперсии воспроизводимости по формуле:

2.7 Проверка значимости коэффициентов уравнения регрессии

Проверяем значимость коэффициентов уравнения регрессии по критерию Стьюдента:

где

Условие значимости Для уровня значимости α = 0,05 и числа степеней свободы f = N - 1 =8 - 1 = 7 находим табличное значение критерия Стьюдента

Сравниваем расчетное значение с табличным и видим, что значение незначительные и их коэффициенты следует исключить из уравнения регрессии. Так как коэффициенты получились незначимы и мы не имеем возможности заново поставить новый эксперимент и продолжаем вычисления, выбрав наиболее близкие к значимым коэффициенты.

Уравнение регрессии примет вид:

2.8 Проверка адекватности уравнения регрессии

Для проверки используется критерий Фишера:

где d – количество коэффициентов уравнения регрессии.

Находим значения :

Найдем значение

Находим табличное значение критерия Фишера для степеней свободы

Сравниваем условие <, значит, модель адекватна.

Выводы:

- Уравнение регрессии имеет вид:

- Анализ значимости коэффициентов уравнении регрессии показал, что влияние всех факторов незначимо.

- Модель адекватна, так как критерий адекватности меньше табличного.

- Измерения в различных серий равноточны.

ЗАКЛЮЧЕНИЕ

Термин «корреляция» был введен в науку выдающимся английским естествоиспытателем Френсисом Гальтоном в 1886 году. Однако точную формулу для подсчета коэффициента корреляции разработал его ученик Карл Пирсон.

Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы