Корреляционный анализ
2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях
Для проверки однородности дисперсии был выбран критерий Кохрена. Для этого рассчитываем дисперсию в каждом опыте по формуле:
.
Находим:
Условия проверки однородности дисперсий по критерию Кохрена:
для уровня значимости 0,05 равна 0,32.
<, следовательно, дисперсия однородна и измерения в разных сериях равноточны.
2.5 Коэффициенты уравнения регрессии
Находим коэффициенты уравнения регрессии.
.
Находим:
Следовательно, уравнение регрессии примет вид:
2.6 Дисперсия воспроизводимости
Вычисляем значение дисперсии воспроизводимости по формуле:
2.7 Проверка значимости коэффициентов уравнения регрессии
Проверяем значимость коэффициентов уравнения регрессии по критерию Стьюдента:
где
Условие значимости Для уровня значимости α = 0,05 и числа степеней свободы f = N - 1 =8 - 1 = 7 находим табличное значение критерия Стьюдента
Сравниваем расчетное значение с табличным и видим, что значение незначительные и их коэффициенты следует исключить из уравнения регрессии. Так как коэффициенты получились незначимы и мы не имеем возможности заново поставить новый эксперимент и продолжаем вычисления, выбрав наиболее близкие к значимым коэффициенты.
Уравнение регрессии примет вид:
2.8 Проверка адекватности уравнения регрессии
Для проверки используется критерий Фишера:
где d – количество коэффициентов уравнения регрессии.
Находим значения :
Найдем значение
Находим табличное значение критерия Фишера для степеней свободы
Сравниваем условие <, значит, модель адекватна.
Выводы:
- Уравнение регрессии имеет вид:
- Анализ значимости коэффициентов уравнении регрессии показал, что влияние всех факторов незначимо.
- Модель адекватна, так как критерий адекватности меньше табличного.
- Измерения в различных серий равноточны.
ЗАКЛЮЧЕНИЕ
Термин «корреляция» был введен в науку выдающимся английским естествоиспытателем Френсисом Гальтоном в 1886 году. Однако точную формулу для подсчета коэффициента корреляции разработал его ученик Карл Пирсон.
Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели