Экология и генетика

В случае же источников техногенного (антропогенного) происхождения следует учитывать, что во-первых, процент техногенного облучения населения всей Земли намного меньше, чем естественного облучения, а во-вторых, здесь уже вмешиваются проблемы несколько иного плана. Это, к примеру, экономико-энергетическая проблема. То есть других более реальных проектов по эффективной энергоотдаче в настоящее в

ремя нет, и атомная энергетика является единственным пока наиболее вероятным и экономически обоснованным вариантом из всех предлагаемых. Хотя это и не оправдывает и не освобождает, конечно же, от огромной ответственности при эксплуатации и разработке подобных проектов. В случае атомных испытаний думается, что излишняя нервозность неуместна тоже. Реалии сегодняшней жизни предполагают активное накопление знаний, а атомные испытания есть необходимый и уникальный инструмент для изучения и познания. К примеру в геологии (науке о Земле) – на сегодня сейсморазведка не располагает другим равносильным инструментом. Хотя, конечно же, с ученых – двойной спрос.

В аспекте вероятностной характеристики опасности техногенных источников излучения наиболее опасными (в смысле, намного более распространенными) являются вовсе не атомные аварии или испытания. В тени остаются куда более реальные источники опасности – это например, медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник отвественен практически за всю дозу, получаемую от техногенных источников радиации. Радиация в медицине используется как в диагностических, так и в лечебных целях (рентгеновский аппарат, лучевая терапия).

Конечно же, нельзя утверждать, что радиация безопасна, но нельзя кидаться и в другую крайность – радиофобию. Хотя, радиация действительно смертельно опасна.

При больших дозах она вызывает серьезнейшие поражения тканей, а при малых может вызвать рак и индуцировать генетические дефекты. По исследованиям Ichimaru M., Ishimaru T.(1975), случаи повышенного риска лейкозов у лиц переживших атомные взрывы в Хиросиме и Нагасаки выявлялись через 5 лет после облучения. После этого происходил подъем относительного риска, который затем резко снижался и исчезал через 25 - 30 лет после облучения. Летальные случаи наблюдаются только после огромных доз облучения.

Венгерские ученые провели мониторинг здоровья жителей близлежащих к Чернобылю районов за 5 лет и выяснили, что нет никакого увеличения генетических изменений после аварии. Из-за неосведомленности генетики вынудили молодых женщин с первой беременностью согласиться на аборт, отсюда и масса осложнений при повторных беременностях и родах. В книге «Жизнь после Чернобыля» шведских ученых С.Кулландера и Б.Ларсона говорится: «Еще ни разу не удалось обнаружить генетические нарушения как следствие облучения. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных пороков». Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рамках Международного Чернобыльского Проекта. По сравнению с контрольными районами не было обнаружено достоверных отличий числа и видов психологических нарушений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменений.

Изложенная сейчас версия является несколько новой (по крайней мере для меня), однако у неё с классической (радиация – смерть) есть одна общая черта – в больших дозах радиация опасна и даже очень, и сейчас мы узнаем почему.

Биологические основы действия ионизирующего излучения на человека:

Единица поглощенной дозы в системе СИ - Грей, Гр (1 Гр=1 Дж/кг=100 рад). Мерой суммарного эффекта хронического облучения человека в малых дозах является эффективная доза, измеряемая в Зивертах, Зв (1 Зв = 100 бэр). С помощью этой универсальной величины учитываются особенности биологического действия на человека внешних источников ионизирующего излучения и инкорпорированных радионуклидов с различной локализацией в организме (изотопы йода, цезия, стронция, плутония и др.).

Биологическое действие ионизирующего излучения на организм человека, согласно современным представлениям, проявляется детерминированными и стохастическими эффектами. Детерминированные эффекты - лучевые поражения органов и тканей -имеют пороговый характер и могут клинически проявляться при уровнях однократного облучения отдельных органов в дозе более 0,15 Гр**, либо хронического многолетнего облучения при мощности эффективной дозы более 0,15 Зв/год. Лучевая болезнь человека может развиться при облучении костного мозга в дозе более 0,5 Гр, либо хроническом многолетнем облучении при мощности эффективной дозы более 0,4 Зв/год.

В соответствии с общепринятой консервативной радиобиологической гипотезой любой сколь угодно малый уровень облучения обусловливает определенный риск возникновения стохастических эффектов. К ним относят индукцию: злокачественных новообразований (канцерогенное действие – рис.15-16), некоторых врожденных пороков развития (тератогенное действие (6-14)) и болезней у потомков облученных (генетическое действие). Для количественной оценки частоты возможных стохастических эффектов используется гипотеза о линейной беспороговой зависимости вероятности отдаленных последствий от дозы излучения с коэффициентом риска 7 10 -2 Зв.

Рассмотрим пути воздействия различных радиоактивных веществ на организм, их распространение в организме, депонирование, воздействие на различные органы и системы организма и последствия этого воздействия.

Различные радиоактивные вещества по - разному проникают в организм человека. Это зависит от химических свойств радиоактивного элемента.

Виды радиоактивного излучения

Альфа-частицы представляют собой атомы гелия без электронов, т.е. два протона и два нейтрона. Эти частицы относительно большие и тяжелые, и поэтому легко тормозят. Их пробег в воздухе составляет порядка нескольких сантиметров. В момент остановки они выбрасывают большое количество энергии на единицу площади, и поэтому могут принести большие разрушения.Из-за ограниченного пробега для получения дозы необходимо поместить источник внутрь организма. Изотопами, испускающими альфа- частицы, являются, например, уран (235U и 238U) и плутоний (239Pu).

Бета-частицы - это отрицательно или положительно заряженные электроны (положительно заряженные электроны называются позитроны). Их пробег в воздухе составляет порядка нескольких метров. Тонкая одежда способна остановить поток радиации, и, чтобы получить дозу облучения, источник радиации необходимо поместить внутрь организма, изотопы, испускающие бета-частицы - это тритий (3H) и стронций (90Sr).

Гамма-радиация - это разновидность электромагнитного излучения, в точности похожая на видимый свет. Однако энергия гамма-частиц гораздо больше энергии фотонов. Эти частицы обладают большой проникающей способностью, и гамма-радиация является единственным из трех типов радиации, способной облучить организм снаружи. Два изотопа, излучающих гамма-радиацию, - это цезий (137Сs) и кобальт (60Со).

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы