Решение заданий по высшей математике

40. Первый замечательный предел

Доказательство: докажем для справедливость неравенства

В силу четности входящих в неравенство ф-ий, докажем это неравенство на

промежуткеИз рисунка видно, что площадь кругового сектора

, так как х>0, то ,

2. следовательно, что

1. Покажем, что

2. Докажем, что

3. Последнее утверждение:

26.Векторное произведение векторов. Свойства.

Векторным произведением векторов и называется вектор , удовлетворяющий следующим условиям:1) , где j - угол между векторами и , 2) вектор ортогонален векторам и

3) , и образуют правую тройку векторов.Обозначается: или.

j

Свойства векторного произведения векторов:1) ;2) , если ïïили = 0 или = 0;3) (m= ´(m) = m(´);4) ´(+ ) = ´+ ´ ;5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то´=6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .Пример. Найти векторное произведение векторов и .= (2, 5, 1); = (1, 2, -3).

37. Основные теоремы о пределах

Теорема 1. , где С = const.Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.

Теорема 2. Доказательство этой теоремы будет приведено ниже.

Теорема 3.

Следствие.

Теорема 4. при

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы