Алгоритм решения Диофантовых уравнений
1) У=Х+2, подставим в уравнение (1) при K=8
Х1=1 Х2=2 Х3=-2
У1=3 У2=4 У3=0
K=8 K=8 K=8
2) У=Х+4
Х=1
У=5
K=24
3) У=Х+6
Х=1
У=7
K=48
4) У=Х+8
Х1=1 Х2=4 Х3=-4
У1=9 У2=12 У3=4
K=80 K=80 K=80
Вари
ант II.
(3)
Подставляем в (3), получаем
, m≥1.
При m=1 K примет значения –7, 1, 17, 41, 73, 113 ….;
Как и в предыдущем варианте получится возрастающий ряд K, и ему соответствует ряд разностей:
У-Х=-1, 1, 3, 5, 7, 9….; У-Х=-3, -5, -7, -9….
Вариант III.
После подстановки 1, 2, окончательно получим
, m≥1.
При m=1 K примет значения –4, 8, 28, 56 ….
Этому ряду K соответствует ряд разностей:
У-Х=0, 2, 4, 6….; У-Х=-4, -6, -8, -10….
Вариант IV.
, m≥1.
При m=1 K примет значения 3, 15, 35, 63, 99 ….
Этому ряду K соответствует ряд разностей:
У-Х=1, 3, 5, 7, 9 ….; У-Х=-3, -5, -7, -9, -11….
Уравнения У2=Х3-Х, У2=Х3-Х+1, У2=Х3+аХ+В и прочие уравнения эллиптических кривых познавательного интереса для данного алгоритма не представляют.
Повторяясь, скажу, важно лишь количество неизвестных. Поэтому распишу лишь первое из них.
- I У - чётное число, Х - нечётное число;
- II У - чётное число, Х - чётное число, всегда У > Х, и как следствие 1>2.
Вариант I.
Т.к.
Тогда
После подстановки
Вариант II.
Сразу пишу ответ
И после всех преобразований и подстановок
Работа при исследовании уравнений данным алгоритмом достаточно монотонная.
Исследование уравнения проведено, кстати, не до конца.
Не рассмотрена ситуация У < Х.
Иррациональные корни уравнения
.
Известно, что данное уравнение имеет иррациональные корни. Но для решения, предположим, что уравнение увидели впервые. И тогда начало решения будет традиционным для данного алгоритма.
Рассмотрим 2 варианта:
- I Х - чётное число, У - нечётное число;
- II Х - нечётное число, У - чётное число.
Всегда Х > У
Вариант I.
Функциональное уравнение общего вида будет:
, где , (1)
Преобразования изображу подробно
(2)
В уравнении (1) ,
Тогда ,
Значения и подставим в формулу (2)
Исходное уравнение
запишем в виде
Тогда
До конца не преобразуя, оставляю решение в виде системы
|
Вариант II.
, где , (4)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах