Алгоритм решения Диофантовых уравнений
14. А < В, Х > У Х – нечётное число, У – нечётное число.
15. А < В, Х > У Х – чётное число, У – нечётное число.
16. А < В, Х > У Х – нечётное число, У – чётное число.
(а)
Для случаев 13, 14, 15, 16 итоговое уравнение одинаковое.
Рассмотрим эти четыре случая чуть подробнее.
, тогда
После подставим в уравнение (а) получим
, при начальном условии .
Тогда варианты 13, 14, 15, 16 – не верны.
Из рассмотренных выше задач, при всех вариантах начальных условий, - 8 задач решений в целых числах не имеют.
Для закрепления материала предлагаю рассмотреть два заведомо не имеющих решения уравнения.
Первый пример.
Пусть: А - чётное число.
В - нечётное число.
А > В, Х > У, Х – чётное число, У – нечётное число.
Основное противоречие состоит в условии А > В, Х > У.
,
что, конечно же, не возможно, т.к. левая часть всегда больше правой.
Второй пример.
Пусть: А - нечётное число.
В - чётное число.
А > В, Х > У, Х – чётное число, У – нечётное число.
После соответствующих преобразований
,
что, конечно же, не возможно.
Гипотеза Биля (ГБ).
, где А, В, С – взаимно простые числа и Х, У, Z > 2.
Рассмотрим 2 варианта:
- I А - чётное число, В - нечётное число, С - нечётное число;
- II А - нечётное число, В - чётное число, С - нечётное число.
Строго говоря, чтобы полностью разобрать ГБ, надо рассмотреть все варианты решения уравнений.
Но дело в том, что новый метод исследования диофантовых уравнений говорит о том, что ГБ не верна, т.е. уравнение при некоторых сочетаниях А, В, С, Х, У, Z может иметь место. По этому будет рассмотрено лишь два примера, которые указывают на возможность решения уравнения.
Вариант I.
а) Пусть А > В > С, и Х < У < Z, и А - чётное число, В - нечётное число, С - нечётное число.
Составим функциональное уравнение.
Подразумевая систему функциональных уравнений, возьмём к = - 3
(1)
Возьмём обозначение
Уравнение (1) примет вид уравнения Каталана
И именно из этого и следует наличие решений у уравнения ГБ.
Вариант II.
а) Пусть А > В > С, и Х < У < Z, где Х, У – нечётные числа, А - нечётное число, В - чётное число, С - нечётное число.
Составим функциональное уравнение.
Решая относительно основания, получим
Проведу преобразование в показателях
После упрощения.
Вполне реальное уравнение, которое должно иметь место.
В настоящей работе представлен сравнительно небольшой анализ. Более серьёзным анализом займусь в зиму 2009-2010 годов.
И приведу один контр пример.
Заведомо противоречивое начальное условие – в примере (а) пусть
Х > У > Z.
Тогда в уравнении Каталана
,
И тогда не может иметь место знак равенства.
Т.е. задача с заведомо неверными начальными условиями исключается сразу.
Вот почему и есть основание верить в решения в целых числах у уравнения ГБ.
Заключение
Данному алгоритму на момент появления в интернете всего два месяца. Дитё.
Что можно нарешать за два месяца? А больше я себе не могу позволить заниматься не профилирующим предметом в моей трудовой деятельности.
Напоследок хочу коснуться одной практической проблемы при решении Диофантовых уравнений данным методом.
Сколько раз можно «бить» по уравнению, представленным алгоритмом?
Можно по отношению к конкретному уравнению теоретически на единицу меньше, чем число неизвестных в данном уравнении.
Первая стадия – убираем самое меньшее неизвестное. А на второй стадии уже надо знать разницу между оставшимся самым маленьким числом, и предстоящим. Или же не зная этой разницы, вводить параметр.
Почему это происходит?
На первой стадии мы наши неизвестные приблизим к началу числовой оси. Если самое наименьшее число чётное, то оно будет находиться на позиции «два», а если не чётное – то на позиции «один».
И чтобы ещё по уравнению пройтись представленным алгоритмом, надо все неизвестные «откатить» от начала числовой оси на несколько шагов. Приведу простейший пример.
Пусть есть уравнение Х3+У3+Z3=6903
И пусть каким - то одним нам известным способом мы узнаём, что Х, У, Z – нечётные и следуют подряд.
Сдвигаю неизвестные на «шаг» от начала оси.
У=2m+1, при m=6 У=13
Z=2m-1, при m=6 Z=11
при m=6 Х=15
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах