Алгоритм решения Диофантовых уравнений

Формула любого составного числа, соответствующего этой матрице, имеет вид - (i + 1) ( j + 1), где i - номер столбца этой матрицы,

j – соответственно, номер строки этой матрицы. Для верхней строки ( = 1) формула составного числа примет вид – 2(i + 1) – это ряд чётных чисел.

Всё это пока заготовка для доказательства великой теоремы Ферма (ВТФ).

Нечётные числа примут вид 2(i + 1) ± 1. В нашем случае пусть нечётные числа будут - 2(i + 1) - 1.

Чтобы доказать ВТФ надо рассмотреть три варианта:

- I X - чётное число, У - чётное число, Z - чётное число;

- II X - чётное число, У - нечётное число, Z - нечётное число;

- III X - нечётное число, У - чётное число, Z - нечётное число.

Вариант I. Пусть уравнение ВТФ верно для чётных чисел.

В формулу ВТФ вставим аналитические выражения чётных чисел.

[2(1 + 1)]n = [2(2 + 1)]n + [2(3 + 1)]n ,

где для определённости возьмём *1 > 2 > 3

После упрощения.

(1 + 1)n = (2 + 1)n + (3 + 1)n

По сути, природа этого уравнения та же, что и уравнения ВТФ, т.к. зависимость между Х, У, Z и столбцами матрицы i – функции соответствующие линейным уравнениям.

Можно составить систему подобных уравнений.

………………………………………… (а)

Каждое уравнение этой системы также является функциональным уравнением ВТФ.

Для обоснования данного утверждения рассмотрим следующий пример.

Вычислим несколько значений соответствующих числу 10 по формуле чётных чисел.

2(1 + 1)=10 1 =4

2(2 + 2)=10 2 =3

2(3 + 3)=10 3 =2

Т.е. переменная может принимать значения от 1 до ¥.

Условием для существования системы уравнений (а) служат лишь условия

и .

Данные условия слабее условий существования пифагоровых троек, где, если (а, в, с) – пифагорова тройка, то таковою будет и тройка (nа, nв, nс), при всех n = 1, 2, 3 …

Т.е. система (а) должна быть справедливой для всего ряда натуральных чисел, при условии неизменности величин р и f, и условии 3 +1<½K½<¥.

Это следует при предположении справедливости уравнения ВТФ – .

У системы уравнений (а) есть 2 варианта:

- I - каждое уравнение системы имеет решение;

- II - каждое из уравнений системы не имеет решений.

Если взять в уравнении системы к = -3, тогда уравнение примет вид

Данное уравнение вида не может иметь решений в целых числах при n>2.

Тогда не верно любое уравнение системы и следовательно не верно и уравнение ВТФ.

Рассматривались чётные значения Х, У, Z.

В системе уравнений (а) переменные I принимают значения всех чисел натурального ряда, и чётных и не чётных. Тогда ВТФ тоже доказана для всего ряда натуральных чисел. Если же рассматривать варианты II и III доказательства ВТФ, тогда функциональные уравнения примут вид:

II [2(1+1)]n=[2(2+1)-1]n+[2(3+1)-1]n

III [2(1+1)-1]n=[2(2+1)]n+[2(3+1)-1]n

Принципиально в доказательстве ВТФ это ничего не меняет.

Для обоснования данного, довольно – таки экзотического на сегодняшний день метода, далее будут рассмотрены некоторые известные задачи.

Уравнение Пелля

(1)

Рассмотрим 3 варианта:

- I Х - чётное число, У - нечётное число, n - нечётное число;

- II Х - нечётное число, У - нечётное число, n - чётное число;

- III Х - нечётное число, У - чётное число, n – любое, и чётное, и нечётное число.

И всегда ½Х½ > ½У½

Вариант I.

Составим функциональное уравнение.

, где, конечно же, 1 > 2

Возьмём к = - 2, тогда

После преобразований

(2)

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы