Элементы интегрального исчисления в курсе средней школы
Содержание
Введение
1. Образовательные цели изучения первообразной функции и интеграла в школьном курсе математики
2. Методическая схема изучения первообразной функции
3. Методическая схема изучения теоремы о площади криволинейной трапеции
4. Методическая схема и аспекты введения понятия интеграла в средней школе
Заключение
Литература
Введение
Основная обра
зовательная цель изучения темы "Первообразная и интеграл" может быть сформулирована так: 1) ознакомить учащихся с операцией, которая является обратной по отношению к операции дифференцирования функций; 2) познакомить с использованием метода интегрального исчисления для решения геометрических задач, некоторых задач практического содержания. В связи с этим развивающими целями будут: а) введение нового метода решения задач ( в частности нахождение площади объёма фигуры) показать известную универсальность математических методов; б) показ учащимся основных этапов решения прикладных задач средствами математики.
1. Образовательные цели изучения первообразной функции и интеграла в школьном курсе математики
Теме "Первообразная и интеграл" предшествует тема "Производная и её применение". Такая последовательность изучения материала создаёт предпосылки для: 1) понимание учащимися взаимосвязи между операциями дифференцирования и интегрирования функций, а также основной идеи метода дифференциального и интегрального исчислений; 2) осознание учащимися того факта, что аппарат производной и интеграла – основа метода математического анализа. С одной стороны, он выступает как язык, описывающий многие явления, процессы мира. С другой – как инструмент, с помощью которого с учётом особенностей языка исследуются эти явления и процессы.
Основу содержания темы составляют два типа вопросов, каждый из которых группируется около двух понятий: "Первообразная", "Интеграл". Основное внимание при изучении уделяется: 1) нахождению первообразных и вычислению интегралов на базе таблиц первообразных и правил нахождения первообразных; 2) вычислению площадей криволинейной трапеции.
В качестве основных задач, решённых в процессе изучения темы, можно выделить следующие:
· введение понятий первообразной и интеграла;
· ознакомление учащихся с основными свойствами первообразных и правилами нахождения первообразных;
· раскрытие смысла операции интегрирования как операции, обратной по отношению к операции дифференцирования заданной функции:
· провести классификацию типов задач (нахождение площади криволинейной трапеции, нахождение объёма тела, задачи с физическим содержанием), показать, каким образом реализуется метод интегрального исчисления. При этом обратить внимание на выделение в процессе их решения этапов, характеризующих процесс математического моделирования.
Теоретический материал включает в себя понятия первообразной и её основное свойство понятие интеграла функции; связь между понятиями "интеграл" и "первообразная", которая устанавливается с помощью формулы Ньютона-Лейбница; формула Ньютона-Лейбница как аппарат вычисления интеграла данной функции.
Перечисленные понятия вводятся на дедуктивной основе, дается иллюстрация использования определения основного понятия, его свойств с помощью конкретных примеров.
Задачи, помимо использования их как средства иллюстрации вводимого в рассмотрение теоретического материала, служат средством его закрепления, о чем свидетельствуют и их формулировки, например: "Найти такую первообразную функцию, график которой проходит через данную точку".
2. Методическая схема изучения первообразной функции
В школьном учебнике были "испытаны" различные варианты введения понятия интеграла. В первых изданиях учебного пособия (под ред. А.Н. Колмогорова) интеграл определяется с помощью формулы Ньютона-Лейбница (как приращение первообразной), в более поздних изданиях применялось традиционное определение интеграла как предела интегральных сумм.
Методическая схема изучения первообразной:
1) рассмотреть примеры взаимно обратных операций;
2) ввести интегрирование как операцию, обратную дифференцированию, а первообразную как результат операции интегрирования;
3) выполнить упражнения типа: "Доказать, что данная функция есть первообразная другой данной функции ", "Решить задачи на отыскание первообразной для данной функции ";
4) ознакомить учащихся с основным свойством первообразной;
5) составить таблицу первообразных;
6) ознакомить учащихся с правилами нахождения первообразных;
7) решить физические задачи с применением первообразной.
Определению первообразной предшествует задача из механики. . Если в начальный момент времени скорость тела равна 0, т.е. , то при свободном падении тело к моменту времени пройдет путь: . Продифференцировав ее, получаем ; - ускорение постоянно. Более типично для механики иное: известно ускорение точки , требуется найти закон изменения скорости и координату . Для решения таких задач служит операция интегрирования.
При введении понятия первообразной пользуются аналогией с известными учащимся примерами взаимно обратных операций. Например, операция сложения позволяет по двум данным числам найти третье число – их сумму. Если же известно первое слагаемое и сумма, то второе слагаемое может быть "восстановлено" выполнением операции вычитания. Следовательно, вычитание – операция, обратная сложению, приводящая к единственному результату. Однако такое бывает не всегда. Например, возведение в квадрат числа 3 дает число 9. Пусть теперь известно, что число 9 является квадратом некоторого числа: . Выполнив обратную операцию – извлечение квадратного корня – получаем два значения: 3 и -3.
Дифференцирование функции приводит к новой функции , которая является производной функции Пусть теперь известно, что производная некоторой функции равна , т.е.:; требуется найти функцию .
Другие рефераты на тему «Педагогика»:
- Сюжетно-ролевая игра
- Развитие диалоговой речи у детей среднего возраста посредством театральной деятельности в детском саду
- Теоретические и методологические основы проблемы взаимодействия учителя и учащихся
- Особенности работы с детьми-олигофренами
- Программа Интел "Обучение для будущего" в педагогическом процессе
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения