Полимеры

20.ФОРМОВАНИЕ ЛИСТОВЫХ ТЕРМОПЛАСТОВ

Формование листовых термопластов является чрезвычайно важным процессом для производства трехмерных изделий из пластиков. Этим методом из листов акрилонитрилбутадиенстирола получают даже такие крупные изделия, как корпуса подводных лодок.

Схема этого процесса такова: термопластичный лист нагревают до температуры его размягчения. Затем пуансон в

прессовывает горячий гиб­кий лист в матрицу металлической пресс-формы (рис.9), при этом лист принимает определенную форму. При охлаждении сформованное изделие затвердевает и извлекается из пресс-формы.

В модифицированном методе под действием вакуума горячий лист за­сасывается в полость матрицы и принимает требуемую форму (рис. 10). Этот метод называется методом вакуумного формования.

Рис. 9. Схема процесса формования листовых термопластов

1 — лист термопластического материала; 2 — зажим; 3 — пуансон; 4 — размягчен­ный нагревом лист; 5 — матрица; 6 — изделие, полученное методом формования лис­товых термопластов

Рис.10. Схема процесса вакуумного формования термопластов

1 — зажим; 2 — лист термопласта; 3 — пресс-форма; 4 — изделие, полученное мето­дом вакуумного формования термопластов

Рис.11. Схематическое изображение ячеистых структур открытого и закрытого типов, образующихся в процессе вспенивания

1- дискретные (закрытые) ячейки; 2 — взаимопроникающие (открытые) ячейки;

3 — стенки ячеек

21.ВСПЕНИВАНИЕ

Вспенивание является простым методом получения пено- и губкообразных материалов. Особые свойства этого класса материалов — амортизи­рующая способность, легкий вес, низкая теплопроводность - делают их весьма привлекательными для использования в различных целях. Обыч­ными вспенивающимися полимерами являются полиуретаны, полистирол, полиэтилен, полипропилен, силиконы, эпоксиды, ПВХ и пр. Вспененная структура состоит из изолированных (закрытых) или взаимопроника­ющих (открытых) пустот. В первом случае, когда пустоты закрыты, они могут заключать в себе газы. Оба типа структур схематически представлены на рис.11.

Существует несколько методов для производства вспененных или ячеистых пластиков. Один из них заключается в том, что через расплавлен­ный компаунд продувают воздух или азот до его полного вспенивания. Процесс вспенивания облегчается при добавлении поверхностно-активных агентов. По достижении требуемой степени вспенивания матрицу охлажда­ют до комнатной температуры. В этом случае термопластичный материал затвердевает во вспененном состоянии. Термореактивные жидкие форполимеры могут быть вспенены в холодном состоянии, а затем нагреты до полного их отверждения. Обычно вспенивание достигается добавле­нием в полимерную массу пено- или газообразователей. Такими агентами являются низкомолекулярные растворители или определенные химиче­ские соединения. Процесс кипения таких растворителей, как н-пентан и н-гексан, при температурах отверждения полимерных материалов со­провождается интенсивным процессом парообразования. С другой стороны, некоторые химические соединения при этих температурах могут раз­лагаться с выделением инертных газов. Так, азо-бис-изобутиронитрил термически разлагается, освобождая при этом большой объем азота. Азот, выделяющийся в полимерную матрицу в результате протекания реакции между изоцианатом и водой, также используется для производства вспенен­ных материалов, например пены полиуретана.

Поскольку полиуретаны получают по реакции пол-иола с диизоцианатом, то для вспенивания продукта реакции необходимо добавление дополни­тельных небольших количеств диизоцианата и воды. Итак, большое количество паров или газов, выделяемых пено- и газообразователями, приводит к вспениванию полимерной матрицы. Полимер­ную матрицу во вспененном состоянии охлаждают до температур ниже температуры размягчения полимера (в случае термопластичных мате­риалов) или подвергают реакции отверждения или сшивания (в случае термореактивных материалов), в результате матрица приобретает жест­кость, необходимую для сохранения вспененной структуры. Этот процесс называется процессом стабилизации пены. Если матрицу не охлаждать ниже температуры размягчения или не сшивать, наполняющие ее газы покидают систему пор и пена коллапсирует.

Пенопласты могут быть получены в гибкой, жесткой и полужесткой формах. Для того чтобы получить изделия из пенопласта напрямую, вспени­вание следует проводить непосредственно внутри пресс-формы. Пенопласто­вые листы и стержни также могут быть использованы для производства различных изделий. В зависимости от природы полимера и степени вспенивания плотность пенопластов может составлять от 20 до 1000 кг/см3. Ис­пользование пенопластов весьма многообразно. Например, автомобиль­ная промышленность использует большие количества пенопластов из ПВХ и полиуретана для обивки. Большую роль эти материалы играют и при изготовлении мебели. Жесткие полистирольные пенопласты широко ис­пользуются для упаковки и теплоизоляции зданий. Пенорезины и пенополиуретаны используют для набивки матрасов и пр. Жесткие пенополиуретаны также применяются для теплоизоляции зданий и для изготовления протезов.

22. АРМИРОВАНИЕ

При армировании пластической матрицы высокопрочным волокном, получают системы, называемые армированные волокном пластики (АВП). АВП обладают весьма ценными свойствами: их отличает высокое отношение прочности к весу, значительная коррозионная стойкость и про­стота изготовления. Методом армирования волокнами удается получать широкий круг изделий. Например, конструкторов, создателей космических кораблей при создании искусственных спутников в АВП, прежде всего, привлекает поразительно высокое отношение прочности к весу. Красивый внешний вид, небольшой вес и коррозионная стойкость позволяют ис­пользовать АВП для обшивки морских судов. Кроме того, АВП используют даже в качестве материала для танков, в которых хранят кислоты.

Остановимся теперь подробнее на химическом составе и физической природе этих необычных материалов. Как было отмечено выше, они пред­ставляют собой полимерный материал, специальные свойства которого обусловлены введением в него армирующих волокон. Основными мате­риалами, из которых изготовляют армирующие волокна (как мелко на­резанные, так и длинные), являются стекло, графит, алюминий, углерод, бор и бериллий. Самые последние достижения в этой области связаны с использованием в качестве армирующих волокон полностью ароматиче­ского полиамида, что обеспечивает более чем 50%-ное уменьшение веса по сравнению с армированными пластиками на основе традиционных волокон. Для армирования также используются и натуральные волокна, такие, как сисал, асбест и пр. Выбор армирующего волокна, прежде всего, определяется требованиями, предъявляемыми к конечному продукту. Однако стеклянные волокна остаются и по сей день широко используе­мыми и до сих пор вносят основной вклад в промышленное производство АВП. Наиболее привлекательными свойствами стеклянных волокон явля­ются низкий коэффициент термического расширения, высокая стабиль­ность размеров, низкая стоимость производства, высокая прочность при растяжении, низкая диэлектрическая константа, негорючесть и химиче­ская стойкость. Другие армирующие волокна используют в основном в тех случаях, когда требуются некоторые дополнительные свойства для эксплуатации АВП в специфических условиях, несмотря на их, более высо­кую стоимость по сравнению со стеклянными волокнами.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы