Статистика процесса использования товаров населением
(20)
(21)
(22)
(23)
(24)
ight=44 src="images/referats/14048/image070.png">(25)
(26)
(27)
Коэффициент линейной корреляции, равный 0,997, свидетельствует о наличии очень сильной связи.
3.2. Оценка существенности коэффициента корреляции. Для этого найдем расчетное значение t-критерия Стьюдента:
(28)
По таблице критических точек распределения Стьюдента найдем tкр при уровне значимости α=0,05 и числе степеней свободы ν = 5-k-1 = 5-1-1=3. tкр = 3,18. Так как tрасч > tкр (22,3> 3,18), то линейный коэффициент считается значимым, а связь между x и y – существенной.
4. Построение уравнения регрессии.
Этап построения регрессионного уравнения состоит в идентификации (оценке) его параметров, оценке их значимости и значимости уравнения в целом.
4.1. Идентификация регрессии. Построим линейную однофакторную регрессионную модель вида Для оценки неизвестных параметров a0, a1 используется метод наименьших квадратов, заключающийся в минимизации суммы квадратов отклонений теоретических значений зависимой переменной от наблюдаемых (эмпирических).
Система нормальных уравнений для нахождения параметров a0, a1 имеет вид:
(29)
После преобразования системы получим:
(30)
(31)
Решением системы являются значения параметров: а0 = 391,08; a1 = 0,43.
Уравнение регрессии:
(32)
Коэффициент детерминации:
Таким образом, судя по регрессионному коэффициенту а1=0,43, можно утверждать, что с увеличением дохода на 1 рубль потребительские расходы увеличивается в среднем на 0,43 рублей в месяц. Коэффициент регрессии а0=391,08 учитывает влияние факторов, неучтенных в модели. В нашем случае влияние неучтенных факторов невелико.
Коэффициент детерминации показывает, что 99,4% вариации признака «потребительские расходы» обусловлено вариацией признака «доход а остальные 0,6% вариации связаны с воздействием неучтенных факторов.
4.2. Проверка значимости параметров регрессии.
Для того, чтобы оценить на сколько параметры а1, а0 отображают исследуемый процесс и не являются ли эти значения результатом случайных величин, рассчитаем средние ошибки и t-критерии Стьюдента.
(33)
(34)
По таблице критических точек распределения Стьюдента найдем tкр при уровне значимости α=0,05 и числе степеней свободы ν = 3. tкр = 3,18. Так как tа0расч > tкр (8,44 >3,18), то параметр а0 считается значимым. Так как tа1расч > tкр (22,4 > 3,18), то параметр а1 считается значимым.
4.3. Проверка значимости уравнения регрессии в целом.
(35)
По таблице критических значений критерия Фишера найдем Fкр = 10,13 (при α=0,05, ν1=k=1, ν2=n-k-1=3). Так как Fрасч > Fкр (497 > 10,13), то для уровня значимости α=0,05 и числе степеней свободы ν1=1, ν2=7 построенное уравнение регрессии можно считать значимым.
5. Использование регрессионной модели для принятия управленческих решений (анализа, прогнозирования и т.д.).
Вычислим прогнозное значение потребительских расходов для величины дохода хр=10000. При уровне значимости α=0,05 точечное значение прогноза
(36)
Т.е. с доверительной вероятностью p=1-α=1-0,05=0,95 можно предполагать, что прогнозное значение потребительских расходов при величине дохода, равной 10000 рублей, составит около 4691,08 рублей.
Таким образом, в результате проведения корреляционно-регрессионного анализа показано, что между величиной дохода и величиной потребительских расходов существует тесная связь. Изучаемые признаки связаны линейной корреляционной зависимостью. Найдены параметры этой зависимости. Проведена комплексная оценка значимости, как параметров регрессионного уравнения, так и регрессии в целом. Показана адекватность построенного уравнения регрессии. Следовательно, регрессионная модель зависимости величины дохода и величины потребительских расходов может быть использована для принятия управленческих решений.
2.5 Методы выявления тренда
Тренд – основная тенденция развития социально – экономического явления. К методам, позволяющим выявить тренд относятся:
1. метод укрупнения интервалов;
2. метод скользящей средней;
3. метод аналитического выравнивания и некоторые другие.
Рассмотрим перечисленные выше методы. Исходные данные приведены в таблице 9.
Таблица 9 Потребительские расходы по месяцам
№п/п |
Месяц |
Потребительские расходы на человека в месяц, руб., |
1 |
январь |
3691,88 |
2 |
февраль |
3839,28 |
3 |
март |
3951,58 |
4 |
апрель |
4149,98 |
5 |
май |
4129,08 |
6 |
июнь |
3470,28 |
7 |
июль |
3398,88 |
8 |
август |
3949,68 |
9 |
сентябрь |
5169,18 |
10 |
октябрь |
5125,28 |
11 |
ноябрь |
4902,28 |
12 |
декабрь |
4657,38 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели