Моделирование и прогнозирование естественного прироста населения в РФ
2. Практическая часть
2.1 Анализ исходных данных
Рассмотрим график временного ряда исходных данных естественного прироста населения РФ в период с января 2006 по декабрь 2008 года (Приложение 1). Проанализировав график, делаем вывод о наличии сезонных колебаний с периодичностью 12 месяцев и возрастающей тенденцией, что наглядно отражено в построенном графике сезонной волны (Приложение 2)
. Подтверждение данному факту отражено в АКФ и ЧАКФ (Таблица 1).
Таблица 1 - Значения АКФ и ЧАКФ
Лаг | АКФ | ЧАКФ |
1 | 0,664 | 0,664 |
2 | 0,537 | 0,173 |
3 | 0,337 | -0,135 |
4 | 0,242 | 0,011 |
5 | 0,065 | -0,164 |
6 | -0,058 | -0,120 |
7 | -0,051 | 0,155 |
8 | 0,044 | 0,225 |
9 | 0,104 | 0,067 |
10 | 0,216 | 0,152 |
11 | 0,247 | -0,031 |
12 | 0,369 | 0,132 |
13 | 0,208 | -0,300 |
14 | 0,162 | -0,025 |
15 | 0,024 | -0,036 |
Наибольшее значение достигается на 1 лаге, следовательно, присутствует тенденция временного ряда. Выбросы по АКФ – 1 и 12 лаг, по ЧАКФ – 1 и 13 лаг – гипотеза о сезонных колебаниях с периодичностью 12 месяцев подтверждается. Качество каждой модели будем оценивать по показателям среднеквадратической ошибки и средней ошибки аппроксимации. После построения всех моделей сделаем по каждой из них прогноз и проанализируем полученные результаты.
2.2 Аддитивная модель временного ряда
По графику временного ряда можно установить наличие приблизительно равной амплитуды колебаний. Это свидетельствует о соответствии этого ряда аддитивной модели. Рассчитаем ее компоненты.
Расчетная таблица модели приведена в Приложении 3.
Шаг 1. Проведем выравнивание исходных уровней ряда методом простой скользящей средней. Для этого:
· Просуммируем уровни ряда последовательно за каждые 12 месяцев со сдвигом на один момент времени и определим условные годовые объемы показателя;
· Разделив полученные суммы на 12, найдем скользящие средние. Отметим, что полученные таким образом выравненные значения уже не содержат сезонной компоненты;
· Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние.
Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями временного ряда и центрированными скользящими средними. Используем эти оценки для расчета значений сезонной компоненты S. Для этого найдем средние за каждый месяц (по всем годам) оценки сезонной компоненты Si. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем месяцам должна быть равна 0.
Для данной модели имеем:
-20801,292 - 229,292 - 10613,250 - 6961,104 - 11583,625 - 676,625 + 13547,792 + 16693,917 + 13749,417 + 4680,354 - 463,792 - 1198,000 = -3855,500
Определим корректирующий коэффициент:
k = -3855,500 / 12 = -321,292
Рассчитаем скорректированные значения сезонной компоненты как разность между ее средней оценкой и корректирующим коэффициентом k:
Проверим условие равенства нулю суммы значений скорректированной сезонной компоненты:
-20480,000 + 92,000 - 10291,958 - 6639,813 - 11262,333 - 355,333 + 13869,083 + 17015,208 + 14070,708 + 5001,646 - 142,500 - 876,708 = 0
Таким образом получены следующие значения скорректированной сезонной компоненты (Таблица 2):
Таблица 2 - Значения скорректированной сезонной компоненты
Январь |
S1 |
-20480,000 |
Июль |
S7 |
13869,083 |
Февраль |
S2 |
92,000 |
Август |
S8 |
17015,208 |
Март |
S3 |
-10291,958 |
Сентябрь |
S9 |
14070,708 |
Апрель |
S4 |
-6639,813 |
Октябрь |
S10 |
5001,646 |
Май |
S5 |
-11262,333 |
Ноябрь |
S11 |
-142,500 |
Июнь |
S6 |
-355,333 |
Декабрь |
S12 |
-876,708 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели