Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии
1. Теоретический вопрос
Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейной прогрессии.
Область прогнозов находится так: среди выборочных х находят xmin и xmax. Отрезок прямой, заключенный между ними называется областью прогнозов.
td> | |
Прогнозируемый доверительный интервал для любого х такой .
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область, которая представляет область заключения между двумя гиперболами. Наиболее узкое место в точке .
Прогноз для произвольного х дает интервал, в который с вероятностью g попадает неизвестное . Т.е. прогноз при заданном х составит от до с гарантией .
Максимальная ошибка прогноза.
Выборочные значения yi равны , где коэффициенты регрессии для всей генеральной совокупности, - случайная величина, значение которой мы определить не можем, так как не знаем .
Для неизвестных коэффициентов могут быть найдены доверительные интервалы, в которые с надежностью g попадают : , .
Геометрический смысл коэффициента - ордината пересечения прямой регрессии с осью 0Y, коэффициента - угловой коэффициент прямой регрессии. Вследствие этого возникает следующая ситуация:
Истинная прямая регрессии может с вероятностью g занимать любое положение в доверительной области.
Наиболее максимальное отклонение от расчетного значения - или . Найдем ошибку прогноза для каждого из значений:
, .
Т.е. максимальная ошибка прогноза в процентах составляет: , т.е. чем больше полуширина доверительного интервала, тем больше ошибка. Ширина доверительного интервала возрастает с ростом коэффициента доверия и уменьшается с ростом объема выборки со скоростью . Т.е. увеличив объем выборки в 4 раза, в 2 раза сузим доверительный интервал, т.е. в 2 раза уменьшим ошибку прогноза. С уменьшением коэффициента доверия уменьшается ошибка прогноза, но растет вероятность того, что истинное значение не попадет в доверительный интервал.
Прогноз на основании линейной модели для двуфакторной модели.
Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
(1)
Точка прогноза из p-мерного пространства с координатами выбирается из области прогноза. Если, например, модель двухфакторная , то область прогноза определяется прямоугольником, представленным на рис. 1.
Рис. 1
Т.е. область прогноза определяется системой неравенств:
Чтобы получить формулу для вычисления полуширины d доверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Матричная запись многофакторной регрессии
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1
№ набл |
Y |
X1 |
X2 |
… |
Xp |
1 |
y1 |
x11 |
x12 |
x1p | |
2 |
y2 |
x21 |
x22 |
x2p | |
… | |||||
n |
yn |
xn1 |
xn2 |
xnp |
(2)
Подставляя в уравнение (2) значения из каждой строки таблицы, получим n уравнений.
(2)
ei – случайные отклонения (остатки), наличие которых объясняется тем, что выборочные точки не ложатся в точности на плоскость (1), а случайным образом разбросаны вокруг нее.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели