Статистический анализ и прогнозирование
Как видим, уже при =0,9 экспоненциальные средние практически воспроизводят сам динамический ряд и не характеризует тренд. Выбор константы сглаживания достаточно произволен. Обычно используются значения в
диапазоне от 0,1 до 0,5. При краткосрочных прогнозах чаще используется указанный диапазон значений : при повышении увеличивается вес последних наблюдений. А для сглаживания случайных колебаний уменьшается. При увеличении срока прогноза более поздняя информация должна иметь несколько меньший вес, т.е. величина уменьшается.
Вычисление прогноза по методу экспоненциальных средних
При использовании экспоненциальных средних в прогнозировании каждый новый прогноз основывается на предыдущем прогнозе:
,
где - прогноз для периода t; - прогноз для периода (t-1); - сглаживающая константа; - фактический уровень для периода (t-1).
Рассмотренный метод прогнозирования относится к классу адаптивных методов. Применительно к прогнозированию процесс адаптации состоит в том. Что при прогнозе на период t учитывается ошибка предыдущего прогноза, т.е. каждый новый прогноз получается в результате корректировки предыдущего прогноза с учетом его ошибки.
Экспоненциальное сглаживание – широко распространенный метод прогнозирования из-за легкости вычисления. Для коротких временных рядов, которые часто встречаются в экономике, важным представляется выбор начальной оценки прогноза. Для этой цели могут быть использованы разные приемы: среднее значение нескольких первых периодов; субъективные оценки, полученные экспертным путем; первое фактическое значение уровня динамического ряда как прогноз для периода 2. Если принять последний подход, то при =0,3, получим прогнозные те же оценки, но сдвинутые на один год.
Рассмотренные экспоненциальные средние представляют собой средние первого порядка, т.е. средние, полученные при сглаживании уровней динамического ряда (первичное сглаживание). При прогнозировании могут использоваться экспоненциальные средние более высоких порядков, т.е. средние, полученные путем многократного сглаживания.
3.8 Прогнозирование на основе эконометрической модели
Системы одновременных уравнений в основном используются для построения макроэкономических моделей функционирования национальной экономики. Это модели мультипликационных эффектов кейнсианского типа различной степени детализации. Наиболее простой вариант модели имеет следующий вид:
где - конечное потребление в постоянных ценах для периода t;
- валовой региональный продукт в постоянных ценах за этот же период;
- чистые инвестиции в постоянных ценах за период времени t;
- случайная компонента.
В силу наличия определяющего уравнения – тождества – структурный коэффициент b не может быть больше 1. Он характеризует краткосрочную предельную склонность к потреблению, b-1 при этом характеризует долю инвестирования. Если b>1, то на потребление расходуются не только доходы, но и сбережения. Параметр a Кейнс рассматривал как прирост потребления за счет других факторов. Поскольку прирост во времени может быть не только положительным, но и отрицательным, то такой вывод правомерен.
Структурный коэффициент b используется для расчета мультипликаторов – инвестиционного мультипликатора потребления и инвестиционного мультипликатора регионального продукта .
Данная модель идентифицируема, и для оценки структурного коэффициента b применяется косвенный МНК. Строится система приведенных уравнений:
в которой А=, а параметры В и являются мультипликаторами, т.е. ; .
Для получения прогнозных значений взаимозависимых переменных необходимо вывести прогнозную форму модели. Для этой цели нужно подставить определяющее уравнение в структурную форму функции потребления:
.
Решая уравнение относительно , получим приведенное уравнение:
Отсюда А=a/(1-b); B=b/(1-b)=; .
Аналогично для получений прогнозной формы инвестиций нужно выразить функцию потребления из структурного уравнения и подставить в определяющее уравнение:
.
После преобразований получается следующий вид:
.
Для R^2=0,9 Fфакт=108,2 > Fтабл=4,75 уравнение значимо
Для R^2=0,95 Fфакт=232,01 уравнение значимо
; ; .
Таким образом, приведенная форма модели содержит мультипликаторы, интерпретируемые как коэффициенты линейной регрессии, отвечающие на вопрос, на сколько единиц изменится значение эндогенной переменной, если экзогенная переменная изменится на 1 единицу своего измерения.
Другие рефераты на тему «Экономико-математическое моделирование»:
- Сущность теории игр
- Имитационное моделирование на основании предварительно установленных зависимостей
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели
- Анализ производства и реализация товаров предприятия
- Математическое моделирование роста доходности страховой компании
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели