Проектирование системы оптимального корректирующего устройства
Из таблицы (см. табл. 1.3) видно, что на частоте расчетная ЛАЧХ заходит в запретную область. Следовательно, ЛАЧХ необходимо поднять на 0,011 дБ. Таким образом, минимальный коэффициент усиления разомкнутой системы будет равен:
с-1.
Коэффиц
иент усиления пропорционального регулятора рассчитывается по формуле:
.
Структурная схема системы с пропорциональным регулятором с числовыми параметрами изображена на рис. 1.7.
Рис. 1.7. Структурная схема системы с пропорциональным регулятором
1.2.2 Проверка устойчивости замкнутой системы
Проверим устойчивость системы по алгебраическому критерию Гурвица (см. п.1.1).
ХУ ЗС: ,
,
,
,
; ; ; ; .
Необходимое условие устойчивости выполняется, так как .
Проверим достаточное условие устойчивости. Для системы четвертого порядка достаточно проверить выполнение условия:
,
,
.
Условие выполняется, следовательно, система устойчива.
Проверим устойчивость системы по критерию Найквиста [1, §6.5, §6.6].
1. С использованием амплитудно-фазовой частотной характеристики (АФЧХ):
Запишем ПФ РС:
.
Для того чтобы судить об устойчивости замкнутой системы, необходимо проверить устойчивость разомкнутой системы. Для этого запишем характеристическое уравнение разомкнутой системы (ХУ РЗ) и найдем корни уравнения:
,
; ; ; .
Так как один из корней равен нулю (), а все остальные корни с отрицательными вещественными частями (левые), то можно сделать вывод, что разомкнутая система находится на апериодической границе устойчивости.
Далее необходимо построить АФЧХ разомкнутой системы (годограф Найквиста). Запишем выражение для построения АФЧХ и выделим действительную и мнимую части:
Задаваясь различными значениями ω в пределах от нуля до бесконечности, построим годограф Найквиста (рис. 1.8) по характерным точкам (табл. 1.4):
Таблица 1.4
ω |
|
|
0 |
-5,146 |
-∞ |
46,7 |
-0,7 |
0 |
290,3 |
0 |
0,008 |
|
0 |
0 |
Рис. 1.8. Годограф Найквиста
Так как годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывает особую точку (−1;j0), то замкнутая система устойчива.
2. С использованием ЛЧХ:
Запишем выражения и построим ЛАЧХ и ЛФЧХ (рис. 1.9):
.
Рис. 1.9. ЛЧХ системы
Замкнутая система устойчива, если выполняется неравенство:
,
где – частота среза, при которой ;
– критическая частота, при которой .
Так как неравенство выполняется, следовательно, замкнутая система устойчива.
Проверим устойчивость системы по критерию Михайлова [1, §6.3].
Запишем ХУ ЗС:
,
,
,
.
Подставим в этот полином чисто мнимое значение . При этом получим функцию Михайлова, как характеристический полином, состоящий из вещественной и мнимой части:
Задаваясь различными значениями ω в пределах от нуля до бесконечности, построим годограф Михайлова (рис. 1.10) по характерным точкам (табл. 1.5):
Таблица 1.5
|
|
|
0 |
87,336 |
0 |
38,82 |
0 |
11,7 |
46,424 |
-36,683 |
0 |
287,71 |
0 |
-10763,5 |
∞ |
∞ |
∞ |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем