Проектирование системы оптимального корректирующего устройства
Условие нахождения системы на границе устойчивости:
,
,
с-1.
4. Показатель колебательности.
Из п.1.3: .
5. Частота среза замкнутой системы.
Частота среза замкнутой системы определяется по графику АЧХ ЗС (рис. 1.15) на уровне :
.
Сравним показатели качества системы с пропорциональным регулятором и скорректированной системы (табл. 1.10).
Таблица 1.10
С пропорциональным регулятором |
Скорректированная система | |
, разомкнутой системы |
38,639 |
43,67 |
, замкнутой системы |
54,961 |
55,807 |
, |
46,424 |
152,356 |
, дБ |
3,038 |
14,958 |
, град. |
7,813 |
54,935 |
|
7,721 |
1,113 |
, |
123,904 |
490,257 |
1.4.3 Определение оценок прямых ПК
Выражение для построения вещественной частотной характеристики (ВЧХ) системы по выходу ДОС (рис. 1.19):
.
Рис. 1.19. ВЧХ по выходу ДОС
По графику ВЧХ замкнутой системы можно оценить прямые ПК [1, §8.5].
1. Оценка перерегулирования.
В данном случае график имеет положительный максимум и отрицательный минимум. Тогда верхняя оценка перерегулирования:
,
где – положительный максимум ВЧХ;
– отрицательный минимум ВЧХ;
– начальное значение ВЧХ.
Следовательно: .
2. Оценка времени регулирования.
Время регулирования находится в пределах:
,
где – частота положительности.
Тогда: .
Выражения для построения ЛАЧХ и ЛФЧХ замкнутой системы по выходу ДОС (рис. 1.20):
,
,
.
Рис. 1.20. ЛЧХ замкнутой системы по выходу ДОС
1.4.4 Определение корневых оценок прямых ПК
Оценить прямые ПК можно также по корням ПФ ЗС:
.
Нули передаточной функции – корни полинома числителя:
.
Полюса передаточной функции – корни полинома знаменателя:
,
,
,
,
,
.
Изобразим нули и полюса на комплексной плоскости (рис. 1.21).
Рис. 1.21. АФЧХ разомкнутой системы
Чтобы оценить прямые ПК необходимо определить доминирующие полюса. Близко расположенные нуль и полюс компенсируют друг друга. Полюс, скомпенсированный нулем, не участвует в оценке прямых ПК. Если выполняется хотя бы одно из неравенств критерия «близости», то нуль компенсирует полюс:
,
.
Проверим выполнение критерия «близости» нуля и полюса :
,
.
Ни одно из неравенств не выполняется, следовательно, близко расположенных нулей и полюсов нет.
Доминирующим является вещественный полюс , так как он наиболее близко расположен к мнимой оси. Из этого следует, что система имеет апериодическую степень устойчивости , равную величине вещественной части доминирующего полюса ().
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем