Проектирование системы оптимального корректирующего устройства
1. Оценка времени регулирования.
Верхняя оценка времени регулирования определяется по формуле:
,
где ; .
Тогда: , .
2. Оценка перерегулирования.
Нижняя оценка перерегулирования:
,
где – колебательность;
– наиболее близкие к мнимой оси комплексно-сопряженные корни.
Тогда: .
1.4.5 Оценка точности системы
Точность системы характеризует величина установившейся ошибки, для определения которой воспользуемся методом коэффициентов ошибок.
Запишем ПФ ЗС по ошибке:
Данную функцию можно разложить в ряд Тейлора по степеням s:
,
где – коэффициенты ошибок.
Переходя от изображения к оригиналу, выражение для установившейся ошибки можно представить в виде:
( 1)
Известно два способа, определения коэффициентов ошибки :
1. Вычисление производных соответствующих порядков ПФ ЗС в точке s=0:
,
.
2. Деление уголком полинома числителя ПФ ЗС на полином знаменателя. Для этого необходимо коэффициенты числителя и знаменателя записать в порядке возрастания степени s, начиная со свободного члена:
.
Делить весь полином числителя нет необходимости, так как необходимо узнать только первые три коэффициента ошибки:
, , .
В данном случае система астатическая первого порядка, так как в прямой цепи системы имеется интегрирующее звено, а также . С увеличением коэффициента усиления разомкнутой системы Кр значения коэффициентов ошибки и уменьшаются, однако увеличение Кр приводит к ухудшению показателей качества переходной характеристики, а при Кр больше граничного значения система оказывается неустойчивой.
Рассчитаем установившуюся ошибку для заданных в ТЗ сигналов:
1. Единичное ступенчатое воздействие . Ошибку определим по формуле (1):
.
2. Сигнал с постоянной скоростью . По формуле (1):
B.
3. Гармонический сигнал , где (из п.2.3).
Ошибка системы определяется выражением вида:
,
где – амплитуда;
– сдвиг фаз.
,
.
Тогда установившаяся ошибка системы:
.
2. ОТРАБОТКА ТИПОВЫХ ВХОДНЫХ СИГНАЛОВ
2.1 Единичный ступенчатый сигнал
2.1.1 Начальные и конечные значения переходных функций по передаточным функциям системы
ПФ ЗС по выходу системы:
.
ПФ ЗС по выходу ДОС:
.
ПФ ЗС по выходу УМ:
.
Начальное и конечное значение переходной функции , зная ПФ ЗС , можно рассчитать исходя из свойств преобразования Лапласа [3, §2.2]:
,
.
Рассчитанные начальные и конечные значения переходных функций (и ) по всем выходам приведены в табл. 2.1.
Таблица 2.1
|
|
| |
|
0 |
0 |
4415,98 |
|
0,0873 |
1 |
0 |
Конечное значение переходной функции по выходу системы определяется как отношение коэффициентов в прямой цепи системы (, , ) к коэффициенту усиления разомкнутой системы .
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем