Двигатели летательных аппаратов

Параметр Δxi определяем графически через Ri.

Рисунок 3 – Распределение давления по длине канала.

Рисунок 4 – Распределение температуры по длине канала.

src="images/referats/21659/image237.png">

Рисунок 5 – Распределение скорости потока по длине канала.

Рисунок 6 – Распределение удельного объёма по длине канала.

9. Ориентировочный расчет смесительной головки канала

В данном расчете располагаем двухкомпонентные центробежные форсунки по концентрическим окружностям, а для создания пристеночного слоя используем однокомпонентные центробежные форсунки горючего.

Рисунок 7 – Расположение форсунок.

Выберем диаметры форсунок ядра и пристеночного слоя:

и

Определим шаг между форсунками Н:

;

где Δ1 – шаг между форсунками ядра Δ1=1 5 мм.

Толщина пристеночного слоя головки lпр:

где: Δ2 – расстояние между форсункой пристеночного слоя и стенкой канала

Δ2=1 4 мм.

Найдём радиус ядра головки Rя:

.

Рассчитаем число концентрических окружностей n:

.

Определим число форсунок ядра и пристеночного слоя :

Выбираем число форсунок пристеночного слоя, возьмём число форсунок равное числу форсунок в крайнем ряду ядра смесительной головки:

Определяем расход через форсунку ядра:

Подставив значения получим:

В результате получим:

Определяем расход через форсунку пристеночного слоя:

Получим:

Рисунок 8 – Схема расположения форсунок на смесительной головке канала

10. Расчет форсунок смесительной головки

10.1 Расчет двухкомпонентной форсунки

10.1.1 Расчет форсунки окислителя

Задаем угол распыла 2α=900, по графику определяем:

А=1,8; μ=0,34; φ=0,55.

Определяем площадь сечения сопла форсунки:

где ρ0 – плотность фтора, ρ0=1513 кг/м3, .

Подставив данные получим:

Определим dc:

Диаметр закрутки:

.

Диаметр входного отверстия в форсунку:

где i – число входных отверстий, i=4.

Определим скорость компонента на входе в форсунку:

Определим число Рейнольдса на входе:

где, - кинематическая вязкость, получим:

Рассчитаем:

подставив данные получим:

Выразим λ, получим: .

Определим Аэкв:

В результате получаем:

Определим расхождение коэффициентов А и Аэкв:

Полученное расхождение меньше 3%. Данную форсунку можно считать идеальной центробежной форсункой.

Определим диаметр камеры закрутки:

Примем

Определим диаметр вихря:

10.1.2 Расчет форсунки горючего

Воспользуемся уравнением расхода:

где: ,– плотность продуктов сгорания при давлении на выходе из сопла форсунки .

Найдём :

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы