Анализ конструкции и методика расчета автомобиля ВАЗ-2105
Тормозная эффективность должна оцениваться раздельно при движении вперед и назад.
Дисковые тормозные механизмы.
Дисковые тормозные механизмы применяются главным образом на легковых автомобилях: на автомобилях большого класса на всех колесах; на автомобилях малого и среднего классов — в большинстве случаев только на передних колесах (на задних колесах применяются барабанные тормоз
ные механизмы).
В последние годы дисковые тормозные механизмы нашли также применение на грузовых автомобилях ряда зарубежных фирм.
Рисунок 28 - Схема дискового тормозного механизма и его статическая характеристика
Схема и статическая характеристика дискового тормозного механизма приведены на рисунке 28. Для него тормозной момент
Мтр = 2Р μ rср,
а коэффициент эффективности
Кэ = Мтр / (2Р rср) = μ.
При расчетном коэффициенте трения μ = 0,35 коэффициент эффективности Кэ = 0,35. Из этого можно заключить, что дисковый тормозной механизм обладает малой эффективностью (как можно будет увидеть дальше — минимальной сравнительно с другими тормозными механизмами). Так, при расчетном коэффициенте трения μ = 0,35 тормозной момент примерно в 3 раза меньше приводного момента. Основным достоинством дискового тормозного механизма является его хорошая стабильность, что отражено в статической характеристике, которая имеет линейный характер. В настоящее время стабильности отдается предпочтение перед эффективностью, так как необходимый тормозной момент можно получить увеличением приводных сил в результате применения рабочих цилиндров большего диаметра или усилителя.
Барабанные тормозные механизмы.
Рассмотрим силы, действующие на колодку барабанного тормозного механизма (рис. 29, а).
Рисунок 29. Схема сил, действующих на колодку барабанного тормозного механизма, и характеристика
Колодка прижимается к тормозному барабану под действием силы Рτ. При вращении барабана по направлению, указанному стрелкой, между барабаном и накладкой колодки возникают силы взаимодействия. Выделим элементарную нормальную силу dРn и элементарную касательную силу dРτ.
Элементарная нормальная сила
dРn = μ dF = p b rб dβ,
где р — давление на накладки; dF — элементарная площадка накладки; b — ширина накладки; rб — радиус барабана; β — угловая координата элементарной площадки.
Элементарная касательная сила (сила трения)
dРτ = μ dРn = μ p b rб dβ
Тормозной момент, создаваемый колодкой,
.
Чтобы проинтегрировать это выражение, необходимо знать, как изменяется давление по длине накладки. При расчетах обычно принимают равномерное распределение давления или распределение по синусоидальному закону р = pmaxsinβ (возможно применение и других законов изменения давления).
При равномерном распределении давления Mтр = μbrб2pβ0 (β0 = β2 — β1 — угол охвата накладки), а при распределении по синусоидальному закону
Mтр = μbrб2p (cos β1 — cos β2).
С достаточной для практических целей точностью можно принять распределение давления по длине накладки равномерным. Это допущение используется далее при сравнительной оценке различных схем тормозных механизмов.
Как видно из схемы, равнодействующая сил трения (условная) приложена на радиусе ρ, который зависит от угла β0 = = 90 .120°. При расчетах тормозного момента равнодействующую сил трения обычно приводят к радиусу тормозного барабана, что позволяет использовать упрощенные формулы. С этой целью вводят коэффициент k0, который можно определить, приравняв момент трения и колодках Mтр = ρ расчетному моменту трения Mтр = = Рτ rб, тогда
Mтр = ρ = Рτ rб,
где Рτ — сила трения, действующая в колодку на плече rб. Отсюда
k0 = rб / ρ = / Рτ = / Pn; = k0 Pn
Коэффициент k0 может быть найден по графику рисунок.
Тормозной механизм с равными приводными силами и односторонним расположением опор — схема сил, действующих на колодки, и статическая характеристика показаны на рисунке 30.
На схеме Р' = Р" = Р — приводные силы; Р'n, Р"n — равнодействующие нормальных сил, действующих со стороны тормозного барабана на колодки; P'τ, P"τ — силы трения, действующие на колодки;
R'x, R''x, R'y, R''y — реакции опор.
Рисунок 30. Схема тормозного механизма с равными приводными силами и односторонним расположением опор и его статическая характеристика
Для активной колодки сумма моментов сил относительно точки опоры колодки
Ph + P'τ rб — k0P'n a = 0.
Принимая во внимание, что P'τ = μP'n, подставим значение P'n в уравнение моментов и решим его относительно P'τ:
.
Момент трения, создаваемый активной колодкой,
.
При k0a = μ rб, Мтр = ∞ тормозной механизм заклинивается.
Для пассивной колодки сумма моментов сил относительно точки опоры колодки,
Ph — P''τ rб — k0P''n a = 0.
Момент трения, создаваемый пассивной колодкой,
.
Тормозной момент, создаваемый обеими колодками,
.
Реакции опор:
активной колодки:
R'y = P'τ; R'x = P'n — P,
где P'n = P'τ / μ = Ph / (k0a — μ rб);
пассивной колодки:
R''y = P''τ; R''x = P''n — P,
где P''n = Ph / (k0a + μrб).
В дальнейшем для сравнительной оценки различных схем тормозных механизмов введем упрощения — будем считать a ≈ rб; k0 = 1; μ = 0,35. Оценить тормозной механизм можно по следующим параметрам:
отношению тормозных моментов, создаваемых активной и пассивной колодками,
М'тр / М''тр = (k0a + μ rб) / (k0a — μ rб);
или, приняв указанные выше упрощения,
М'тр / М''тр = (1 + μ) / (1 — μ) = 1,35 / 0,65 ≈ 2
При принятых упрощениях активная колодка обеспечивает примерно в 2 раза больший тормозной момент по сравнению с пассивной, что приводит к ускоренному ее изнашиванию. Возможно применение ступенчатых цилиндров, в которых поршень большего цилиндра воздействует на пассивную колодку, но при этом неоправданно усложняется конструкция; причем:
Другие рефераты на тему «Транспорт»:
- Организация деятельности информационного вычислительного центра Октябрьской железной дороги
- Проектирование контейнерного терминала
- Техническая характеристика, устройство и работа тормозной системы автомобиля ВАЗ-2106
- Проект вагонного участка по ремонту систем кондиционирования воздуха пассажирских вагонов
- Авиационный транспорт в туризме
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск