Самоходный стреловый кран
Привод гидронасосов осуществляется от входного вала раздаточной коробки шасси при помощи карданного вала.
В передней и задней частях шасси расположены выдвижные балки выносных опор. Они увеличивают опорную базу крана. В каждую балку вмонтированы гидроцилиндры выдвижения балки и силовой гидроцилиндр для установки крана на опоры.
При установке на опоры используются подпятники, которые кре
пятся на штоках опор при помощи рычагов. При транспортном положении – они крепятся на крыльях шасси.
2.2 Поворотная платформа
Состоит из поворотной рамы, опорно-поворотного устройства, механизма поворота, основной грузовой лебедки с ограничителем сматывания и прижимным роликом; вспомогательной лебедки с ограничителем и прижимным роликом; противовеса, гидрооборудования, гидроцилиндр подъёма стрелы, кабины с постом управления, электрооборудования и стопоры поворотной платформы.
К поворотной раме крепятся шарнир крепления стрелы, цилиндр подъёма стрелы.
Общий вид поворотной платформы представлен на рис. 3.
Рис. 3. Платформа поворотная общий вид.
1 – опорно-поворотное устройство; 2 – гидроцилиндр подъёма стрелы; 3 – пост управления; 4 – кабина; 5 – токоприёмник кольцевой; 6 – механизм поворота; 7 – лебедка вспомогательная; 8 – лебёдка основная; 9, 11 – ролики прижимные; 10 – противовес; 12 – рама поворотная; 13 – маслоохладитель; 14 – соединение шарнирное; 15 – стопор.
2.3 Стреловое оборудование
Стреловое оборудование крана включает в себя телескопическую стрелу и крюковую подвеску грузоподъёмностью 50т. Кран может оснащаться сменным стреловым оборудованием из монтируемого удлинителя и крюковой подвески грузоподъёмностью 6,3т. Общий вид телескопической стрелы приведен на рис. 4, вид крана с дополнительным стреловым оборудованием – рис. 5.
Стрела состоит из 4-х секций: основания, 2-х выдвижных секций и головки. В стреле находятся гидроцилиндр и канатный механизм телескопирования. Стрела выполнена сварной, из высокопрочной малолегированной стали. Концы секций имеют окантовку которая придаёт им прочность и жесткость.
Рис. 4. Стрела телескопическая
Рис.5. Стреловое оборудование сменное.
1 – стрела; 2 – крюковая подвеска грузоподъёмностью 50т; 3 - крюковая подвеска грузоподъёмностью 6,3т; 4 – удлинитель 9,5м; 5 – трос; 6 – удлинитель 16м.
2.4 Гидравлическое оборудование крана
Применение гидравлического привода обусловлено несколькими причинами, основная из которых – малые габариты при высокой удельной мощности, возможность плавного регулирования скорости движения, надежность и долговечность. Гидроприводы используются в тех случаях, когда невозможно использовать электропривод (например, если требуются относительно небольшие по размеру устройства), в т.ч. – в самоходных подъёмных устройствах большой грузоподъёмности.
Недостатками выбранного типа приводов можно считать: высокая стоимость, трудность предупреждения утечек рабочей жидкости, ухудшение работы при низких температурах, необходимость частой смены рабочей жидкости.
В данной модели применили объёмный гидропривод, с приводом от двигателя шасси.
Служит для установки и снятия крана с выносных опор и питает рабочей жидкостью гидросистемы поворотной платформы.
Гидросистема поворотной платформы служит для привода крановых механизмов: основной и вспомогательной лебёдок, механизмов подъёма и телескопирования стрелы.
Гидросистема состоит из 2-х основных и контура управления.
Контур 1 – привод механизмов поворота, механизма подъёма и телескопирования стрелы.
Контур 2 – приводы основной и вспомогательной лебедок.
Контур управления – дистанционное управление контура, привод компрессора кондиционера и вентилятора маслоохладителя.
3. Расчет механической части
Произведем расчет мощности двигателя привода главной лебедки, как одной из наиболее ответственных частей, обеспечивающих подъём груза требуемой массы на определённую высоту с заданной скоростью.
Кинематическая схема привода приведена на рис. 6.
Рис. 6. Кинематическая схема привода главной лебедки.
Максимальное натяжение каната определим по формуле:
где G – вес груза, Н;
η – КПД полиспаста,
а – кратность полиспаста.
Момент сопротивления на валу двигателя, создаваемый весом груза и силами трения в элементах механизма:
где - диаметр барабана,
- число наматываемых ветвей каната,
- передаточное число привода барабана,
- КПД передачи привода барабана.
Средний пусковой момент
где - момент инерции вращающихся частей барабана;
- момент инерции массы груза приведенный к валу двигателя.
Момент инерции барабана
Общий КПД подъёмного механизма
Момент на валу двигателя при подъёме груза с постоянной номинальной скоростью
Мощность двигателя при подъёме груза с постоянной номинальной скоростью
Механизм привода барабана главной лебедки приведен на рис. 7.
1 – барабан; 2 – основание; 3 – вал; 4 – подшипник; 5 – вал-шестерня; 6 – пробка; 7 – подшипник; 8 – корпус; 9 – тормоз; 10 – опора; 11, 17 – болт; 12 – крышка; 13 – колесо зубчатое; 14 – подшипник; 15 – вал; 16 – подшипник; 18 – опора; 19 – шайба; 20 – гидромотор; 21 – втулка шлицевая; 22 – сапун; 23 – крышка; 24 – подшипник; 25 – клин.
Заключение
На примере крана КШТ - 50.01 был рассмотрен целый класс устройств, предназначенных для выполнения погрузочно-разгрузочных работ.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск