Формирование познавательной потребности у учащихся средствами информационных технологий
Устная работа (фронтально).
1)На экране спроецирована таблица для устного счёта. Для функций, указанных в таблице, составить хотя бы одну первообразную. (Таблица в презентации).
2) Устное повторение теоретического материала (фронтально):
- Дайте определение первообразной.
- Как читается основное свойство первообразной?
- Какие правила нахождения первообразной существуют?
>- Что называется неопределённым интегралом?
- Что называется криволинейной трапецией?
- Как выглядит формула Ньютона – Лейбница?
- В чём состоит геометрический смысл определенного интеграла?
- В чём состоит физический смысл определенного интеграла?
3)Верно ли? На слайде для каждой функции f(x) записана первообразная F(x), но в записи первообразной есть ошибка. Найдите ошибку и прокомментируйте.
f(x)=(8x-5)2, F(x)=(8x-5)3/3+C
Ответ: не хватает перед первообразной множителя 1/8так, как функция f(x) сложная.
f(x)=sin(5+4x), F(x)= -1/5cos(5+4x)+C
Ответ: перед первообразной должен быть множитель1/4, а не 1/5так, как коэффициент к=4.
Ответ: не хватает перед первообразной множителя 2.
2. Обобщение и систематизация знаний и способов деятельности
1а) Групповая работа над темой. На экране через проектор с компьютера проецируются портреты математиков: 1 - Лейбница, 2 - И. Бернулли, 3 - Ферма, 4 – Я. Бернулли, 5 - Ньютона. Класс делится на пять групп. Каждая группа получает карточку со своим заданием: найти значение постоянной С. На этой же карточке дана историческая справка о вкладе конкретного учёного в развитие теории интегрального исчисления. Вычислив значение С, каждая группа связывает это число с номером портрета математика. Представитель от группы зачитывает историческую справку для других. (Портреты в презентации, задания для групп в приложениях 1 и 2).
1б) Продолжим групповую работу. Установить соответствие.
На экране три функции f,g,h и три графика первообразных для данных функций. Для каждой функции записать первообразную и найти график этой первообразной. Решают все на месте в тетрадях также группами, затем озвучивают результаты.
1. f(x)=sinx, 2. g(x)=cosx, 3. h(x)=cos2x
Решение:
F(x)= -cosx+C, G(x)=sinx+C, H(x)=0,5 sin2x+C
2) Устно. Первообразная тесно связана с интегралом. Мы с вами вспоминали формулу Ньютона – Лейбница. Вы знаете, что определённый интеграл используют для вычисления площадей плоских фигур, и в первую очередь для вычисления площади криволинейной трапеции.
Посмотрим на экран и выясним являются ли фигуры криволинейными трапециями.
Физкультминутка
3) Работа у доски. Три ученика выходят к доске и получают карточки с заданием вычислить площадь фигуры. Остальные учащиеся на местах решают две задачи на нахождение площади фигур, затем правильность решения проверяется с помощью проектора.
Задание классу.
Учебник №360(г), №364(г).
Задание 1 ученику - №365(в),
Задание 2 ученику - №365(г),
Задание 3 ученику - №361(б).
4) Работа у доски.
Определённый интеграл используют и в других дисциплинах. Например, на уроках физики с помощью определённого интеграла можно вычислить работу переменной силы, массу, центр масс, электрический заряд, перемещение и количество теплоты.
Задача 1.Сила упругости пружины, растянутой на 6 см, равна 4,2 Н. Какую работу надо произвести, чтобы растянуть пружину на 6см?
Решение:F=kx;
4,2=k*0,06;
k=420:6;
k=70, F=70x
5) Контролирующая самостоятельная работа по перфокартам.
В каждом варианте 6 заданий. К каждому заданию 4 варианта ответов, только один из них правильный. У каждого ученика на парте лежит контрольный талон. Решив задание в тетради, уч – ся выбирает номер верного ответа и зачёркивает его в контрольном талоне. После выполнения всех 6 заданий в каждом контрольном талоне будет зачёркнуто 6 чисел. Ученики сдают талоны учителю, который при помощи шаблона с прорезями быстро проверяет работы, накладывая шаблон на талон.
Контрольный талон
Фамилия, имя Класс вариант | ||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
Шаблон для проверки
1 вариант
Х | ||||
Х |
X | |||
Х |
X | |||
X |
2 вариант
X | ||||
Х |
X | |||
X | ||||
X | ||||
X |
Другие рефераты на тему «Педагогика»:
- Развитие коммуникативных умений младших школьников с нарушением слуха в процессе внеурочной деятельности
- Компьютерные методы контроля на уроках физики средней школы
- Методика работы над орфографическим навыком письма
- Особенности дисграфических ошибок учащихся с задержкой психического развития
- Динамика представления о стиле межличностных отношений психолога
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения