Обучение школьников решению составных задач

В начальном курсе математики рассматриваются простые задачи и составные преимущественно в 2-4 действия.

Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению её на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо

установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.

Запись решения составной задачи с помощью составления по ней выражения позволяет сосредоточить внимание учащихся на логической стороне работы над задачей, видеть ход решения её в целом. В то же время дети учатся записывать план решения задачи и экономить время.

В решении составной задачи появляется существенно новое сравнительно с решением простой задачи: здесь устанавливается не одна связь, а несколько, в соответствии с которым вырабатываются арифметические действия. Поэтому проводится специальная работа по ознакомлению детей с составной задачей, а также по формированию у них умений решать составные задачи. Более подробно на методике решения составных задач мы остановимся во второй главе данной курсовой работы.

Общепризнанно, что для выработки у учащихся умения решать задачи, важна всесторонняя работа над одной задачей, в частности, и решение её различными способами.

Следует отметить, что решение задач различными способами позволяет убедиться в правильности решения задачи даёт возможность глубже раскрыть зависимости между величинами, рассмотренными в задаче.

Возможность решения некоторых задач разными способами основана на различных свойствах действий или вытекающих из них правил.

При решении задач различными способами ученик привлекает дополнительную информацию, поскольку он непроизвольно выполняет в большем числе выборы суждений, хода мысли из нескольких возможных; рассматривается один и тот же вопрос с разных точек зрения. При этом полнее используется активность учащихся, прочнее и сознательнее запоминается материал. Как правило, различными способами решаются те из задач, где этого требует вопрос, поэтому такая работа носит эпизодический характер.

В качестве основных в математике различают арифметический и алгебраический способы решения задач. При арифметическом способе ответ на вопрос задачи находится в результате выполнения арифметических действий над числами. Арифметические способы решения задач отличаются друг от друга одним или несколькими действиями или количеством действий, также отношениями между данными, данными и искомым, данными и неизвестным, положенными в основу выбора арифметических действий, или последовательностью использования этих отношений при выборе действий.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

В зависимости от выбора неизвестного для обозначения буквой, от хода рассуждений можно составить различные уравнения по одной и той же задаче. В этом случае можно говорить о различных алгебраических решениях этой задачи.

Но надо отметить, что в начальных классах алгебраический способ не применяется для решения задач.

Опираясь только на чертёж, легко можно дать ответ на вопрос задачи. Такой способ решения называется графическим.

Графический способ даёт возможность более тесно установить связь между арифметическим и геометрическим материалами, развить функциональное мышление детей.

Следует отметить, что благодаря применению графического способа в начальной школе можно сократить сроки, в течение которых ученик научится решать различные задачи. Графический способ даёт иногда возможность ответить на вопрос такой задачи, которую дети ещё не могут решить арифметическим способом и которую можно предлагать во внеклассной работе.

В заключение необходимо сказать о том, что решение задач различными способами – дело непростое, требующее глубоких математических знаний и умения отыскивать наиболее рациональные решения, что определенно влияет на общий уровень развития младшего школьника.

Общие вопросы методики обучения решению задач

Научить детей решать задачи – значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия.

В начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач называются задачами одного вида.

Работа над задачами не должна сводится к натаскиванию учащихся на решение задач сначала одного вида, а затем другого и т.д. Главная ее цель – научить детей осознано устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:

- Подготовительную работу к решению задач;

- Ознакомление с решением задач;

- Закрепление умения решать задачи.

Остановимся подробнее на каждой ступени.

а) Подготовительная работа к решению задач.

На этой ступени обучения решению задач того или другого вида должна быть создана у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.

До решения простых задач ученики усваивают знание следующих связей:

Связи операций над множествами с арифметическими действиями, то есть конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения; если имеем 4 и 2 флажка, то чтобы узнать, сколько всего флажков, надо к 4 прибавить 2.

Связи отношений «больше» и «меньше» (на сколько единиц и в несколько раз) с арифметическими действиями, то есть конкретный смысл выражений «больше на…», «больше в … раз», «меньше на…», «меньше в … раз». Например, больше на 2, это столько же и еще 2, значит, чтобы получить на 2 больше, чем 5, надо к 5 прибавить 2.

Связи между компонентами и результатами арифметических действий, то есть правила нахождения одного из компонентов арифметических действий по известному результату и другому компоненту. Например, если известна сумма и одно из слагаемых, то другое слагаемое находится действием вычитания. Из суммы вычитают известное слагаемое.

Связи между данными величинами, находящихся в прямо или обратно пропорциональной зависимости, и соответствующими арифметическими действиями. Например, если известна цена и количество, то можно найти стоимость действием умножения.

Кроме того, при ознакомлении с решением первых простых задач, ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы