Обучение школьников решению составных задач
Итак, в данной курсовой работе исследовалась методика решения составных задач. В результате проведенного исследования можно сделать следующие выводы.
У всех авторов определение задачи сформулировано по-разному, но все авторы сходятся в том, что у решателя должна быть определенная цель, стремление получить ответ на вопрос, в задаче есть условие и требование, необходимые для решения задачи. У
словие задачи составляют объекты задачи и отношения между ними. Анализ условия подводит к пониманию известных и к поискам неизвестного. Этот поиск идет в процессе решения задачи. Детям надо объяснить, что решать задачу - это значит понять и рассказать, какие действия нужно выполнить над данными в ней числами, чтобы получить ответ. В тексте задачи указываются связи между данными числами, а также между данными и искомыми. Эти связи и определяют выбор арифметического действия. Все арифметические задачи по числу действий, выполняемых для их решения, делятся на простые и составные.
Решение задач разными способами, получение из нее новых, более сложных задач и их решение в сравнении с решением исходной задачи создает предпосылки для формирования у ученика умения находить свой «оригинальный» способ решения задачи, воспитывает стремление вести «самостоятельно поиск решения новой задачи», той, которая раньше ему не встречалась.
Методика работы над задачей подразумевает несколько этапов. Мы изучали этап работы над задачей после ее решения, на котором одним из видов деятельности является преобразование задач. Используемая нами методика обучения преобразованию задач состоит из трех этапов: подготовительная работа, обучение и закрепление. Мы провели 8 уроков, на которых велась работа по данному направлению. В результате проведенных уроков и последующих контрольных работ мы выяснили, что методика действует, подтверждая выдвинутую нами гипотезу.
Результаты проведенного эксперимента показывают, что обучение с применением метода преобразования задач повышает активность мыслительной деятельности учащихся, помогает понять задачу, осознать выбор действия, найти самостоятельно рациональный путь решения, установить нужный способ проверки, определить условия, при которых задача имеет или не имеет решения.
Исследования доказали, что если на уроках математики в начальной школе вести работу по обучению преобразованию задач, то это будет эффективным средством повышения общего уровня умения решать составные задачи.
Другие рефераты на тему «Педагогика»:
- Творческая деятельность как средство развития воображения у детей с ОНР младшего школьного возраста
- Формирование языковой компетенции учащихся
- Пути и методы педагогического опыта и его обобщение
- Методика формирования орфографической грамотности в начальной школе
- Дифференцированный подход как условие личностно-ориентированного обучения
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения