Возможности использования элементов теории вероятностей и статистики на уроках математики в начальной школе

Òàáë. C

 

1

2

3

4

5

6

valign=top >

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

Непосредственный подсчет показывает: вероятность того, что сумма очков на верхних гранях меньше 9, равна ; что эта сумма больше 7 — ; что она делится на 3: ; наконец, что она четна, .

Задача 5. В старинной индейской игре “Тонг” два игрока одновременно показывают друг другу либо один, либо два, либо три пальца на правой руке. Если для каждого игрока равновозможно показать 1, 2 или 3 пальца, то чему равна вероятность того, что общее число показанных пальцев четно? Нечетно? Больше четырех? Меньше двух?

Обсуждение. Составим таблицу, в которой номер строки — число пальцев, показанных первым игроком, номер столбца — число пальцев, показанных вторым игроком, а на пересечении строки и столбца стоит общее число показанных пальцев, т. е. сумма номеров строки и столбца.

Òàáë. D

 

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

Всего имеется 9 равновозможных исходов, соответствующих девяти элементам таблицы. Общее число показанных пальцев четно в 5 исходах, нечетно — в 4, больше четырех — в 3 исходах, меньше двух — ни в одном. Вероятности равны соответственно , , , .

Задача 6. Какова вероятность того, что наудачу выбранное четырехзначное число составлено только из нечетных цифр?

Обсуждение. Всего четырехзначных чисел имеется 9000: они идут в натуральном ряду от 1000 до 9999. Так как нечетных цифр имеется 5, то на каждом из мест (разряды тысяч, сотен, десятков и единиц) может стоять любая из 5 цифр. Всего, таким образом, имеется 5´5´5´5 = 625 четырехзначных чисел, составленных только из нечетных цифр. Значит, искомая вероятность равна 625/9000 = 5/72.

Задача 7. Что вероятнее — выиграть у равносильного противника 3 партии из 4 или 5 партий из 8?

Обсуждение. Прежде всего надо ввести равновозможные исходы. Противники равносильны — это значит, что из большого числа партий примерно половина кончается победой первого, а половина — второго. Мы считаем, кроме того, что результаты нескольких партий не влияют на результаты остальных. Это соглашение дает нам возможность установить, что, скажем, в матче из четырех партий все 2´2´2´2 = 16 возможных последовательностей побед и поражений имеют одинаковую вероятность.

Рассмотрим в качестве примера большое число матчей из двух партий. Из n матчей примерно в n/2 в первой партии победит первый игрок. Поскольку результат первой партии не влияет на результат второй, то примерно в половине тех матчей, где первый игрок победил в первой партии, он проиграет во второй, всего примерно в n/2´1/2 = n/4 матчах. Аналогично события “победил в обоих партиях первый игрок”, “победил в первой партии второй игрок, а во второй — первый”, “в обоих партиях победил второй игрок” будут иметь место примерно в n/4 матчах, т. е. вероятности всех этих событий равны 1/4.

В дальнейшем в задачах мы будем сталкиваться со случаями, когда несколько опытов проводятся независимо друг от друга. Как в предыдущем образце, можно показать, что вероятность события “исход первого опыта есть A, а второго — B” равно произведению вероятностей событий “исход первого опыта есть A” и “исход второго опыта есть B”.

Вернемся к задаче. В матче из четырех партий имеется 16 равновероятных исходов — последовательностей побед и поражений первого игрока. Событию “первый игрок победил в 3 партиях” благоприятны 4 исхода, поскольку единственное поражение может стоять на одном из четырех мест. Значит, вероятность выиграть 3 партии из 4-х у равносильного противника равна 1/4.

В матче из 8 партий имеется 28 = 256 равновозможных исходов — последовательностей побед и поражений первого игрока. В скольких из них ровно 5 побед? Другими словами, сколько существует подмножеств из 5 элементов в множестве из 8 элементов? Комбинаторика подсказывает нам, что это есть число сочетаний из 8 элементов по 5 элементов, которое подсчитывается по формуле: . Таким образом,

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы