Сравнительный анализ методик преобразований Галилея в курсе общей физики и в курсе элементарной физики
Мысленно проводится через точку систему координат
. Ось
направляется вдоль берега, ось
rder=0 width=15 height=17 src="images/referats/28893/image072.png">– перпендикулярно течению реки. Это неподвижная система рис. 5
отсчета. Другую систему координат связывают с плотом. Оси
и
параллельны осям
и
. Это – подвижная система координат.
Как движется лодка относительно этих двух систем?
Наблюдатель на плоту, двигаясь вместе со «своей» системой координат по течению, видит, что лодка удаляется от него к противоположному берегу все время перпендикулярно течению. Он видит это и в точке А, и в точке В, и в любой другой точке. А когда через некоторое время плот окажется в точке С, лодка достигнет противоположного берега в точке С’. Относительно подвижной системы координат (плота) лодка совершила перемещение . Разделив его на
, подвижный наблюдатель получит скорость лодки
относительно плота:
.
Совсем другим представится движение лодки неподвижному наблюдателю на берегу. Относительно «его» системы координат лодка за то же время совершила перемещение
. За это же время подвижная система отсчета вместе с плотом совершила перемещение
(лодку, как говорят, «отнесло» вниз по течению). Схематически перемещения лодки показаны на рисунке. [3]
Далее в этом параграфе вводятся формула сложения перемещений
и формула сложения скоростей
,
а так же, чему равна скорость тела относительно неподвижной системы координат.
Мы видим, что и перемещение и скорость тела относительно разных систем отсчета различны. Различны и траектория движения (– относительно подвижной системы и
– относительно неподвижной). В этом и состоит относительность движения.
Далее мы переходим к рассмотрению преобразований Галилея в курсе общей физики.
С объяснения этого понятия начинается изучение принципа относительности Галилея. Сопоставляются описания движения частицы в инерциальных системах отсчета и
, движущихся друг относительно друга со скоростью
(рис. 6).
Рис. 6
Для простоты выбираются оси координат так, как показано на рисунке. Отсчет времени начинается с того момента, когда начала координат и
совпадали. Тогда координаты
и
произвольно выбранной точки
будут связаны соотношением
. При сделанном выборе осей
и
. В ньютоновской механике предполагается, что время во всех системах отсчета течет одинаково; поэтому
. Таким образом, получается совокупность четырех уравнений:
,
,
,
,
называемых преобразованиями Галилея. Эти уравнения позволяют перейти от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы.
Следуя по программе, далее рассматриваются инерциальные системы отсчета и первый закон Ньютона.
Законы механики одинаково выглядят во всех инерциальных системах отсчета.
Затем необходимо познакомиться с классическим законом сложения скоростей. Мы знаем, что компоненты скоростичастицы в системе
определяются выражениями
,
,
.
В системе компоненты скорости
той же частицы равны
,
,
.
В ходе некоторых вычислений формулы преобразования скоростей при переходе от системы к системе
.
,
,
.
Другие рефераты на тему «Педагогика»:
- Организация проведения уроков географии с использованием технологии "Кластеры" в 7 классе
- Коменский о родительской педагогике
- Исследование воздействия специализированной программы обучения на уровень развития внимания младших школьников
- Разработка методики преподавания факультатива по программированию на языке JavaScript
- Методика использования изобразительных средств наглядности на уроках истории
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения