Формирование у дошкольников 6-7 лет элементарных математических представлений
Вначале воспитатель помогает детям выделить признаки фигур, а позднее они самостоятельно решают, по каким признакам можно сгруппировать фигуры, сколько групп получится, сколько фигур попадет в ту или иную группу, т. е. предварительно планируют действия, а затем их производят.
Группируя фигуры, дети ориентируются на один признак, отвлекаясь от других. У них развивается способность к отвлечен
ию, обобщению. Целесообразно, проводя упражнение в группировке, систематизировать знания детей о форме, например вначале распределить фигуры на 2 большие группы — фигуры круглой формы и многоугольники. Затем среди фигур круглой формы выделить круги и фигуры овальной формы, а среди многоугольников — четырехугольники и треугольники, наконец, среди четырехугольников найти прямоугольники и квадраты.
Полезно предлагать детям такие задания: «Найдите, какая фигура в ряду лишняя, какую ошибку сделали при подборе фигур». (Среди 6 треугольников, расположенных в ряд, помещен 1 четырехугольник и т. п.) «Какой фигуры не хватает?» (Треугольники, фигуры овальной формы, прямоугольники 3—4 размеров распределены по рядам, в каждом ряду фигуры одной разновидности расположены в порядке убывающего или возрастающего размера, в последнем ряду 1 фигуры не хватает.) Дети должны последовательно рассмотреть каждый ряд, назвать, какие фигуры нарисованы, какого они цвета, размера, и решить, какой фигуры недостает в третьем ряду.
Задачи на нахождение признаков отличия одной группы фигур от другой позволяют закрепить представление о треугольниках, четырехугольниках и других фигурах. Используют парные таблицы, на которых изображены круги и фигуры овальной формы, треугольники и четырехугольники. (Фигуры представлены 2—3 размеров и цветов.) Существенные признаки отличия замаскированы несущественными (размер, цвет), от них дети должны отвлечься, чтобы найти правильный ответ. Для этого воспитатель предлагает внимательно рассмотреть сначала все 5—6 фигур левой стороны, а затем — правой и найти, чем все фигуры, нарисованные слева, отличаются от всех фигур,нарисованных справа.
Необходимо, чтобы знание геометрических фигур постоянно использовалось детьми при анализе формы окружающих предметов. Детям дают задания: определить, какую форму имеет окно, крышка коробки, стенка шкафа, косынка; назвать предметы или части предметов, имеющие форму треугольника и т. п. В повседневной жизни полезно практиковать игры «Семь в ряд», «Геометрическое лото», «Посадим овощи», «КВН дружных ребят».
Дети приучаются обследовать и анализировать форму предметов, придерживаясь определенной последовательности: определяют сначала общий контур и выделяют наиболее крупную, затем остальные части, определяют их форму, пространственное положение, относительный размер. Необходимо учить их подмечать признаки не только сходства, но и отличия формы предмета от известной им геометрической фигуры.
Это имеет большое значение для совершенствования изобразительной и других видов деятельности детей.
У детей 6—7 лет развивают сообразительность, учат их видоизменять геометрические фигуры, составляя из нескольких треугольников четырехугольники, пятиугольники, из частей круга — полный круг. Воспитатель предлагает рассмотреть имеющиеся у детей фигуры, распределить их по форме, сказать, как они называются, какого размера, а потом взять 2—3 фигуры и подумать, какие новые фигуры можно из них составить, соединив их вместе. Выполнив задание, дети рассказывают, какие новые фигуры получились и из каких фигур они составлены. Составляя целые фигуры из частей, дети догадываются, сколько кругов можно составить из 2—4 половинок, из 6—8 частей, равных четвертой части круга, и т. п.
В работе с детьми большую пользу приносят занимательные игры и упражнения геометрического содержания: они развивают интерес к математическим знаниям, способствуют формированию умственных способностей детей.
Дошкольники с удовольствием решают задачи на смекалку, головоломки, задачи на построение, например составляют 2 квадрата из 7 палочек присоединением одной фигуры к другой, перекладыванием 1, 2, 3 палочек из одной фигуры получают другую (из фигуры домика делают флажок и др.); определяют, сколько кругов, треугольников, прямоугольников использовано при составлении той или иной картинки-аппликации (петрушка и др.); отгадывают, из каких фигур составлен чертеж или узор, сколько их. Играя в «Танграм» (геометрический конструктор), дети воссоздают сложные фигуры: зайчика, журавля, петушка и др., составляют их из 7 простых геометрических фигур.
Воспитатель поощряет самостоятельность детей, внушает им, что интересно бывает лишь тогда, когда решишь задачу сам. Для этого надо придумать, догадаться, рассказать, как делать, а потом проверить решение. Например, он говорит: «Посмотрите на эту фигуру. Кого она вам напоминает? Да, это как будто петушок. Этого петушка надо составить из 7 фигур. Посмотрите, из каких частей состоит эта фигура. Из каких фигур составлена каждая часть? Какой они величины и как расположены? Расскажите, как вы составите фигуру петушка». Если вначале воспитатель вместе с детьми рассматривает фигуру, то затем дает им лишь план анализа и, наконец, приучает делать анализ самостоятельно. Первые 2—3 сложные фигуры дети составляют по образцу, на котором четко обозначены границы каждой фигуры, а позже руководствуются образцом, на котором нанесен лишь общий контур сложной фигуры. В дальнейшем они сами придумывают, какие предметы можно изобразить, пользуясь 7 фигурками игры.
В процессе решения задач воспитатель развивает гибкость мышления детей, приучая их отказываться от неправильно выбранного пути решения («Не получилось — подумай, как можно сделать по-другому»), в случае особых затруднений подсказывает им частичное решение, поощряет верно найденные первые шаги («Эти фигуры ты положил правильно, подумай, что надо сделать дальше»). Задачи должны быть посильны детям, иначе у них пропадет интерес к их решению. Поэтому занимательные задачи геометрического характера даются тогда, когда дети усвоили знания о форме и не только правильно называют ее, но и умеют воспроизводить, преобразовывать, видят геометрическую основу окружающих предметов.
1.8 Ориентировка в пространстве и времени
К моменту поступления в школу дети должны свободно ориентироваться в направлении движения в пространственных отношениях между ними и предметами, а также между предметами. Большое значение имеет развитие умения ориентироваться на плоскости. Вся работа должна строиться на основе выделения парных противоположных понятий: «налево — направо», «вперед — назад» и т. п.
Особенно важно обеспечить действенное овладение детьми пространственной ориентацией. Они должны не только определять направления и отношения между предметами, но и уметь использовать эти знания: передвигаться в указанном направлении, располагать и перемещать предметы и др.
Выделенные пространственные связи и отношения должны отражаться в речи с помощью предлогов и наречий: в, на, под, над, перед, за, сзади, впереди, вверху, внизу, выше, ниже, рядом, друг за другом, между, напротив, левая, правая, верхняя, нижняя и др.
Другие рефераты на тему «Педагогика»:
- Роль игры в развитии познавательной деятельности младших школьников
- Развитие профессиональной компетентности педагога в условиях системы Д.Б. Эльконина - В.В. Давыдова
- Основные подходы к пониманию сущности педагогического мастерства в современной педагогике спорта
- Особенности восприятия художественного текста младшими школьниками
- Теоретические основы деятельности муниципального образования по обеспечению социальных гарантий детства
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения