Принцип межпредметных связей при решении химических задач. Разбор основных способов решения расчетных задач
В курсе физики величина «количество вещества» изучается значительно позднее, чем в химии. Поэтому важно правильно сформировать понятие о ней, чтобы в дальнейшем у учащихся не возникало противоречий.
Методику решения задач также полезно связать с физикой, сохраняя форму записи условия и решения. Этого требует и соблюдаемый в школе единый орфографический режим. Кроме того, гораздо более рацио
нален физико-математический путь решения, когда все расчеты производят сначала в буквенных выражениях и лишь после этого подставляют числовые значения. Проиллюстрируем форму записи, например, на задаче:1
Ответ: Для получения 1 г железа требуется 0,18 моль водорода и 0,18 моль оксида железа.
Набор расчетных задач в школьном курсе химии невелик. Различают обычно расчеты по формулам и расчеты по уравнениям реакций. Особо выделяют задачи, связанные с растворами.
В некоторых программах оговорено, в каких темах какие типы задач следует вводить, в других право выбора предоставляется учителю. Поэтому приведем только перечень типов задач, решение которых учащиеся осваивают в школе.
А. Расчеты по формулам:
Вычисление относительной молекулярной массы вещества.
Вычисление отношения масс атомов элементов в сложном веществе.
Вычисление массовой доли элемента в веществе (в %).
Вычисление массы определенного количества вещества.
Вычисление масс и объемов газов (при н. у.).
— Вычисление относительной плотности газов. Б. Расчеты по уравнениям
Вычисление масс веществ или объемов газов по известному количеству вещества одного из вступающих в реакцию или образующихся в результате ее веществ.
Вычисление объемных отношений газов по химическим уравнениям.
Расчет по термохимическим уравнениям количества теплоты по известному количеству и массе одного из участвующих в реакции веществ.
Расчеты по химическим уравнениям, если одно из реагирующих веществ дано в избытке.
Определение массовой доли выхода продукта от теоретически возможного.
Вычисление массы продукта реакции по известной массе исходного вещества, содержащего определенную массовую долю примесей.
В. Расчеты на выведение формул веществ
Нахождение молекулярной формулы газообразного вещества на основании его плотности и массовых долей входящих в него элементов (в %).
Г. Расчеты массовой доли вещества в растворе (в %)
Расчеты по определению массовой доли растворенного вещества (в %) в растворе и массы растворенного вещества по известной массовой доле его в растворе.
Обучение учащихся решению расчетных химических задач следует начинать постепенно. Сначала научить подсчитывать относительную молекулярную массу Мг, постепенно переходить к молярной массе М (г/моль), затем к решению задач по химической формуле веществ и затем к расчетам по химическим уравнениям. При этом вначале расчеты не следует усложнять. Начинают их производить обязательно в молях, подбирая условия так, чтобы не требовалось перевода в граммы или литры. Впоследствии такой перевод будет казаться вполне естественным. Конечно, содержание задач обязательно должно быть согласовано с изучаемой темой. Нельзя, например, требовать расчета объема газа, если еще неизвестен закон Авогадро и молярный объем.
И только после всего этого допустимы всевозможные усложнения задач и их комбинирование, широко используемые для составления олимпиадных и конкурсных задач.
Нередко при решении задач приходится видеть скучающие глаза учеников, которые считают, что химические расчеты вовсе не нужны. Тогда учитель привлекает для обоснования их необходимости по возможности жизненные примеры. Можно задать на дом выполнение какого-нибудь домашнего опыта, связав его с расчетом.
О едином методическом подходе к решению задач по химии
В решении задач должен соблюдаться единый методический подход. Ведущая роль в обучении учащихся решению задач принадлежит учителю. Но нельзя недооценивать и самостоятельности учащихся при решении задач. При переходе от одного этапа к другому следует руководствоваться рекомендациями по формированию умений. Рассмотрим сущность этих этапов.
Выбирая задачу для учащихся, учитель обязан оценить ее с точки зрения следующих целей.
Какие понятия, законы, теории, факты должны быть закреплены в процессе решения, какие стороны свойств изучаемого вещества и химические реакции отмечены в процессе решения.
Какие приемы решения задачи должны быть сформированы.
Какие мыслительные приемы развиваются в процессе решения задачи.
Какие дидактические функции выполняют данные задачи. Если учитель ставит перед собой цель — закрепление теоретического материала, то метод решения задачи должен быть уже известен учащимся.
Если учитель хочет объяснить новый тип задачи по методу решения, то учащиеся должны свободно оперировать учебным материалом. Одновременно обе цели ставить не рекомендуется.
Задачу учитель решает заранее и проверяет ответ, чтобы убедиться, что он правильный.
На уроке в классе учитель актуализирует знания учащихся, которые используются при решении задачи. Затем проводится анализ условия задачи. Учитель кратко его записывает с помощью символов и условных обозначений, как уже было показано выше. Далее разрабатывают план решения и по возможности выражают его в общем виде с помощью указанных выше формул, соблюдая все правила, которым учащиеся обучены на уроках математики и физики. Только после этого приступают к числовому решению и проверяют ответ.
Если цель решения — изучение нового типа задач, то четко формулируют алгоритм, который учащиеся записывают в тетрадь, и отмечают, какому типу решения он соответствует. В младших классах алгоритм может быть выражен в виде вопросов задачи. После этого к доске можно вызвать хорошего ученика, чтобы он решил аналогичную задачу. Далее учащимся предлагают самостоятельно решить аналогичную задачу.
Задачи различают сложные и трудные. Сложными называют задачи, которые требуют от ученика применения теоретических знаний по разным темам курса химии, умения решать задачи разных типов, объединяя и выбирая для решения конкретной задачи все необходимое. Нередко это задачи обобщающие. Сложность задачи — понятие объективное, подразумевающее большое число элементов знаний и умений, используемых при их решении и определенного перечня мыслительных операций.
Трудные задачи — понятие субъективное. Имеются в виду задачи, требующие творческого подхода, неожиданных умственных действий. Их следует давать для самостоятельного решения только сильным учащимся. В классе такую задачу объяснять не следует. Ее можно использовать в виде индивидуального задания или на внеклассных занятиях. Впрочем, для учеников со слабой обучаемостью трудной задачей может оказаться и объективно сравнительно простая. Учитель обязан это учитывать, осуществляя индивидуальный подход, который при решении задач особенно уместен. При решении задач развивающая функция обучения проявляется особенно четко. С их помощью можно добиться повышения уровня мыслительной активности учеников. В настоящее время издается очень большое число сборников задач, что предоставляет учителю широкий выбор.
Другие рефераты на тему «Педагогика»:
- Значение дидактических игр
- Психолого-педагогические условия для развития творческих способностей младших подростков на уроках иностранного языка
- Формирование потребностно-мотивационной сферы личности для построения личной стратегии здравотворчества
- Особенности познавательного развития мальчиков и девочек дошкольников
- Основы умственного и физического воспитания умственно-отсталых детей
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения