Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ
Таким образом, угол рассеяния иона α в СЦМ зависит от формы потенциальной энергии поля U(r) и кинетической энергии иона Eотн:
. (2.21)
Величина rmin есть значение r при и определяется как корень выражения, стоящего под знаком радикала в формулах (2.16) и
(2.20) [21, 22]:
. (2.22)
Важнейшей характеристикой процесса рассеяния является эффективное сечение рассеяния:
, (2.23)
где п — число частиц, проходящих в единицу времени через единицу площади поперечного сечения однородного пучка; dN — количество частиц, рассеянных в единицу времени в единицу телесного угла , т. е. рассеянных в углы, лежащие в интервалах от α до α+dα и от φ до φ+dφ.
Для ионов с энергией 1 – 10 кэВ (Дж) связь между прицельным расстоянием и углом рассеяния взаимно однозначна, и в интервал углов от α до α+dα рассеиваются только те частицы, для которых прицельное расстояние заключено в интервале от р до p+dp. Число таких частиц равно
, (2.24)
и поэтому
. (2.25)
Следовательно, окончательно имеем
. (2.26)
Итак, зная потенциальную энергию взаимодействия сталкивающихся частиц U(r), энергию Tn, Tmax, α и сечение рассеяния dσ по формулам (2.8), (2.9), (2.20) и (2.26) можно найти упругие потери энергии ионом и дифференциальное сечение рассеяния.
Главную роль играет выбор потенциала взаимодействия. Если скорость налетающей частицы сравнима со скоростью любого электрона атома мишени или меньше ее, то необходимо учитывать экранирование ядер атомными электронами. В настоящее время еще не найдено точное значение потенциала взаимодействия частиц с учетом экранирования ядер электронами [1, 2, 12, 21, 22, 57]. Однако существует несколько приближенных выражений для потенциала, хорошо описывающих взаимодействие частиц в различных энергетических интервалах [22, 57 – 61].
Потенциал Томаса-Ферми-Фирсова [67 – 69]. При изучении систем со многими взаимодействующими частицами приходится ограничиваться приближенными методами, применение которых дает удовлетворительное описание реальных свойств и параметров. Для атомов и молекул такими методами являются: вариационный метод и метод самосогласованного поля Хартри—Фока [65, 70]. Вариационный метод обычно используется только для легких атомов, в то время как методом Хартри—Фока могут быть изучены любые атомные системы. В методе самосогласованного поля каждый электрон рассматривается движущимся в сглаженном симметричном относительно центра (ядра) потенциальном поле, образованном ядром и всеми электронами. Состояние отдельного электрона атома может быть описано некоторой собственной функцией, а собственная функция всего атома комбинируется из собственных функций отдельных электронов.
Для атомной системы с большим числом электронов движение частиц под действием самосогласованного потенциала может считаться квазиклассическим в преобладающей части пространства. Потенциал в этом случае является слабоменяющейся функцией координат за исключением области вблизи ядра и периферийной части атома. Квазиклассическое приближение к уравнениям Хартри—Фока носит название приближения Томаса—Ферми [63, 71].
В статистической модели атома Томаса—Ферми объем атома разделяется на элементы объема dv, в которых содержится значительное число электронов и в каждом из них потенциал можно считать постоянным. Эти условия не выполняются в периферийной области атомов из-за малого количества электронов, а около ядра — из-за резкого изменения потенциала. Для устранения этих недостатков квазиклассического приближения приходится вводить квантовые поправки. В статистической модели атома Томаса—Ферми принимается во внимание только электростатическое взаимодействие между электронами, тогда как взаимодействие электронов с параллельными (обменная поправка) и антипараллельными (корреляционная поправка) спинами не учитывается.
Таким образом, из статистической теории атомных систем можно найти распределение потенциала или электронной плотности как функции расстояния от ядра r [22, 57]:
, (2.27)
где ; - радиус экранирования Томаса-Ферми-Фирсова, м [22, 57]. Этот потенциал более приближен к реальному, особенно для атомов с большим порядковым номером Z. Именно поэтому он наиболее подходит для расчётов пробегов ионов азота в металлах и сплавах.
Функция экранирования находится как решение дифференциального уравнения , но аналитически это уравнение не решается. В работе [67] представлена в табулированном виде. Однако пользоваться численными значениями не всегда удобно, поэтому до настоящего времени не прекращаются попытки найти её приближённое значение. Для практических задач исследователями получен ряд аппроксимаций функции Томаса-Ферми:
- Зоммерфельда [58]:
; (2.28)
- Гаспара [59]:
; (2.29)
- Тейтца [60]:
; (2.30)
- Видефола [61]:
. (2.31)
Литературные данные [46, 47, 57 – 61, 76, 78] не позволяют выбрать из этих аппроксимаций наилучшую, поэтому при практических расчетах можно использовать любую из предложенных функций.
С повышением энергии ионов возрастает вклад неупругого торможения на электронах материала подложки и при можно учитывать только электронное торможение иона. В разделе 2.3.2 рассмотрим потери энергии, происходящие при этом процессе.
2.3.2 Электронное торможение иона в материале
В настоящее время еще не получена общая формула, описывающая неупругие потери энергии ионом во всем диапазоне энергий имплантации [3]. Поэтому приходится ограничиваться формулами, справедливыми для узких энергетических интервалов.
Расчет электронных потерь энергии можно проводить на основе теорий Фирсова [22] и Линдхарда – Шарфа [21]. Для диапазона энергий имплантируемых ионов 1 – 10 кэВ (Дж) неупругие потери энергии вычислены только для потенциала Томаса—Ферми—Фирсова.
Другие рефераты на тему «Производство и технологии»:
- Разработка технологического процесса изготовления зубчатого колеса
- Обоснование необходимости разработки информационного тезауруса для проектирования самолета и технологии его изготовления в САПР
- Методическое обеспечение дефектоскопии компрессорных станций
- Макроструктура металла и сплавов
- Автоматическая система управления питания котельных агрегатов
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды