Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ

где N - плотность атомов обрабатываемого материала, м-3, S - коэффициент распыления.

Коэффициент распыления равен числу атомов, выбиваемых одним падающим ионом и рассчитывается по формуле:

, (2.39)

где as – безразмерный коэффициент, характеризующий эффективность передачи энергии, который зависит от отношения масс взаим

одействующих частиц; Sn - сечение упругого торможения при начальной энергии иона E0, Дж; Eb – энергия связи атомов на поверхности обрабатываемого материала, Дж. Таким образом, теоретически величина предельной концентрации примеси не зависит от дозы облучения, определяясь плотностью атомов обрабатываемого материала и коэффициентом распыления его ионами имплантируемой примеси. Поскольку коэффициент распыления является функцией порядковых номеров и массовых чисел иона и обрабатываемого материала, а также энергии иона, то величина Nmax будет существенно зависеть от этих параметров. Поэтому изменяя энергию иона можно менять максимальную концентрацию имплантированной примеси. Также и для различных материалов подложки эта величина будет разной.

Знание распределения примеси и точечных дефектов в материале подложки после имплантации необходимо для нахождения остаточных концентрационных напряжений.

2.5 Остаточные концентрационные напряжения

Как правило, глубина модифицированного слоя значительно меньше размеров легированной поверхности изделия. Тогда имплантированный материал можно схематизировать как полупространство. Предполагаем, что до обработки поверхность была свободна от напряжений, а начальные концентрации дефектов и примесей равнялись нулю. При наличии примесей и дефектов поверхностный слой растягивается или сжимается и затем остается в таком состоянии. Напряжения в поверхностном слое (рисунок 2.7) описываются следующим уравнением [34]:

(2.40)

где σxx, σyy, σzz – нормальные напряжения, действующие вдоль координатных осей, ; Сi(х) – концентрация ионов, м-3; Сv(х) – концентрация вакансий, м-3; μ – модуль упругости материала подложки, ; Ω – атомный объём кристаллической решётки материала подложки, м3; δV – релаксационный объём точечного дефекта.

Рисунок 2.7 – Остаточные концентрационные напряжения в поверхностном слое материала подложки после имплантации.

Остаточные концентрационные напряжения определяют свойства материала после имплантации. Для расчета концентрационных напряжений по соотношению (2.40) необходимо определить распределение концентраций примесных атомов Ci(x) и вакансий Cv(x). Для их расчёта необходимо определить пробеги ионов, которые рассчитываются с помощью метода Монте-Карло (см. раздел 3.1). Использование этого метода позволяет учесть вероятностный характер физических процессов, протекающих при ионной имплантации в мишенях сложного химического состава, – таких как металлы и сплавы.

3. Методики расчёта основных параметров физических процессов, происходящих при ионной имплантации

Методики расчёта основных параметров физических процессов, происходящих при ионной имплантации основаны на следующих допущениях:

1) при прохождении иона через вещество не учитывается изменение его заряда и массы;

2) мишень считается аморфной (не учитывается кристаллическая решетка);

3) потери энергии ионом определяются только упругими и неупругими столкновениями, причём оба вклада считаются независимыми в процесс торможения;

4) ион останавливается, когда его энергия меньше потенциальной энергии взаимодействия его с атомом решётки перед столкновением;

5) изменение химического состава материала в процессе имплантации не учитывается.

Допущение 1 основано на том, что после имплантации азот находится в атомарном состоянии в материале подложки. Заряд и масса имплантируемых ионов меняются не только в процессе столкновений с атомами решётки, но и при подлёте к поверхности материала за счёт эффекта нейтрализации. Учёт этих эффектов сильно осложняет расчёты, но, как показано в работах [21, 22], незначительно повлияет на их точность. Допущение 2 соответствует немонокристаллическим мишеням, таким как металлы и сплавы.

Для аналитического расчета распределения по глубине мишени концентрации внедренных ионов по формуле (2.36) необходимо определить средний проецированный пробег и его страгглинг. Для одноатомных веществ можно воспользоваться соотношением (2.3). Реальные материалы имеют более сложный химический состав и физические процессы, протекающие при ионной имплантации в них имеют вероятностный характер. Для учёта этих факторов используется метод имитационного моделирования Монте-Карло.

3.1 Методика расчета пробегов ионов методом Монте-Карло

Для определения среднего проецированного пробега Rp и его отклонения ΔRp воспользуемся методом имитационного моделирования Монте-Карло. Этот метод используется для расчёта пробегов ионов в подложках сложного химического состава. Он основан на расчёте потерь энергии ионом из соотношений (2.8) и (2.34) при каждом отдельном взаимодействии с атомом мишени.

При этом случайными величинами при моделировании каждого взаимодействия будут прицельный параметр р, а также характеристики очередного атома мишени М2, Z2. Такой метод имитационного моделирования позволит учесть неоднородность химического состава обрабатываемого материала.

Таким образом, для моделирования процесса внедрения ионов в рамках методики расчета концентрационных напряжений воспользуемся формулой (2.36). Для определения входящих в (2.36) параметров (среднего проецированного пробега ионов и его отклонения) разработана методика расчета методом Монте-Карло.

В соответствии с теорией Линхардта-Шарфа-Шиотта учитываются потери энергии только при неупругих взаимодействиях с электронами и упругих взаимодействиях с ядрами

(3.1)

где Т - общие потери энергии при одном взаимодействии, Дж.

В качестве потенциала взаимодействия используется универсальный потенциал Томаса-Ферми (2.27), так как для него рассчитана прямая зависимость энергетических потерь от прицельного параметра (2.34).

Модель одного взаимодействия иона с атомом материала подложки. Потери энергии ионом в материале подложки рассчитываются в соответствии с (3.1). После каждого взаимодействия энергия иона уменьшается на величину T.

Электронные потери рассчитываются по формуле (2.34). При этом E – текущая энергия иона (энергия иона до столкновения). Скорость иона рассчитывается в соответствии с энергией иона перед столкновением. Прицельный параметр p генерируется как случайная величина в пределах половины межатомного расстояния; М2, Z2 – атомный номер и атомная масса элемента вещества подложки, генерируются в соответствии с процентным содержанием элемента в материале мишени. Затем определяются Zmin и Zmax для использования в формуле (2.34).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы