Анализ и оптимизация затрат на предприятиях строительной отрасли
Сегодня мы признаем потребность в изучении и совершенствовании как проблемы в целом, так и архитектурных аспектов. Особое значение приобретают вопросы, связанные с окружающей средой, стоимостью, комфортом и надежностью эксплуатации зданий. Следует с горечью признать, что проектирование ведется без учета важнейших задач по созданию среды жизнедеятельности и человеческих потребностей, архитектурн
ого формообразования зданий в зависимости от условий и места строительства. Несовершенство проектных решений, устаревшие нормативы, дефекты строительства и эксплуатации по-прежнему ведут к избыточным потерям тепла в зданиях (40 % - через ограждения, 30-40 % - через окна, 9 % - через крышу, 10-15 % - через полы первого этажа).
Относительный расход тепла на отопление зданий связан, прежде всего, с их геометрическими параметрами и функционально зависит от объемно-планировочного коэффициента (отношение периметра к площади здания или помещения при постоянной величине высоты этажа).
Следует иметь в виду, что из-за многофакторности исходных предпосылок, влияющих на оптимальный модуль ячейки, не может существовать одного оптимального решения, а должна рассматриваться некоторая область их вариантов. Это значит, что в основу проектирования должен быть положен ряд ячеек различных размеров, по которым можно выявить динамику изменения относительного расхода тепла. Только так мы сумеем определить наиболее экономичные модульные конструктивные ячейки. Расчеты показывают, что увеличение размера ячейки от 3,6 до 6 м приводит к снижению расхода тепла почти на 40 %. При дальнейшем увеличении - от 6 до 8,4 м и от 8,4 до 10,8 м - расход снижается только на 25 %, с 10,8 до 13,2м - на 18,5% и с 13,2 до 15,5 м - на 17%. Таким образом, варианты геометрических параметров энергоэкономичных ячеек целесообразно рассматривать в диапазоне от 3,6 до 10,8 м с учетом применения различных конструкций и материалов. Однако выбор оптимальной величины модульной конструктивной ячейки должен быть обоснован с точки зрения расхода не только тепла, но и основных строительных материалов и трудоемкости.
Оптимальные размеры несущих конструкций предусматривают получение достаточной надежности при минимальном расходе строительных материалов. Практика проектирования показывает, что увеличение пролета здания в 2 раза приводит к четырехкратному увеличению изгибающего момента, то есть к существенному утяжелению конструкций, поэтому размеры пролета должны определяться фактически необходимым свободным пространством. В противном случае увеличение габаритов ячейки при компоновке здания может оказаться дорогостоящим.
Поиски новых типов жилища в XXI веке, связанные с необходимостью изменения строительной типологии дома в соответствии с современными социально-экономическими условиями, направлены на создание приемов и схем, расширяющих возможности вариантного проектирования. Практика проектирования показывает, что в малоэтажном и многоэтажном домостроении предпочтительными и перспективными являются пролеты 4,8 м и 7,2 м. Пролет 4,8 м обеспечивает оптимальные архитектурно-планировочные решения в соответствии с действующими нормами проектирования. Он дает возможность получить рациональную ширину корпуса здания, а также самые разнообразные типы домов по двухпролетной схеме. Его применение допускает трансформацию планировочного пространства и вариантность проектирования. Пролет 7,2 м при однопролетной схеме оптимален для всех типов домов и позволяет осуществить кардинальную трансформацию архитектурно-планировочного пространства. Предпочтительность проектирования малоэтажных зданий на пролете 4,8 м и соответствующей ему конструктивной ячейке подтверждается современной отечественной и зарубежной практикой (в Швеции, США, Италии используется шаг стен, близкий к 4,8 м).
В ближайшем будущем станет нормой расширение типологии жилых зданий. Наряду с уже сложившимися относительно новыми для России малоэтажными и многоэтажными домами повышенной площади жилых ячеек, а также комфортности и качества должны появиться многофункциональные жилые структуры. Новая типология жилища и типов жилых домов повлекут за собой дальнейшую их дифференциацию в зависимости от уровня спроса и доходов потребителя. Но требования к энергосбережению остаются в силе. Типология жилого дома оказывает существенное влияние на потребление энергии, а главное - на эффективность ее распределения.
Российскими специалистами (на основе проведенных исследований и анализа передового опыта, накопленного в РФ и за рубежом) разработаны и внедряются архитектурно-строительные системы для зданий различного назначения с применением безригельного каркаса. Создание современного отечественного оборудования для выполнения работ в условиях строительной площадки позволило сократить материалоемкость таких зданий на 30-40 %, а трудоемкость - на 20 %. Построено уже несколько десятков 16-этажных жилых домов, в том числе в Москве и Московской области, в Краснодаре и других регионах страны.
В то же время качественные параметры применяемых сейчас архитектурных систем в большинстве своем не отвечают новым требованиям по энергоэффективности, ресурсосбережению. Большая часть объемов массового жилищного строительства выполняется по модернизированным типовым проектам с утеплением только ограждающих конструкций стен. Несмотря на новые требования по усилению теплоизоляции, практически все индивидуальные застройщики (а объемы осуществляемого ими строительства составляют более 40 % от общих объемов по стране) полностью их игнорируют.
В 1997 году была утверждена подпрограмма "Архитектурно-строительные системы жилищного строительства ГЦП "Жилище". В ней впервые рассматривались архитектурно-строительные системы нового поколения, обеспечивающие широкие возможности организации внутреннего пространства жилых зданий, гигиеническое качество, безопасность и комфорт жилья, а также повышение энергоэффективности и снижение материалоемкости строительства на основе технического перевооружения действующей материально-технической базы домостроения и создания новых технологий производства. К сожалению, они так и не получили своего осуществления в полной мере.
Открытая архитектурно-строительная система включает:
· модули различных подсистем, для которых можно применить взаимозаменяемые узлы, детали и конструкции, созданные на основе существующей нормативной базы строительства;
· возможности организации внутреннего пространства с использованием различных конструктивных решений зданий;
· координированный набор типоразмеров унифицированных строительных изделий, которые могут применяться для возведения зданий различного назначения;
· охват строительства как малоэтажного (до 4 этажей включительно) на основе легких унифицированных конструкций, деталей и элементов, так и многоэтажного - на основе каменных материалов или металлических конструкций, а также разнообразных легких ограждающих конструкций;
· единую модульную систему и конструктивные элементы, взаимозаменяемые с элементами других архитектурно-строительных систем в соответствии с заданным уровнем унификации.
Другие рефераты на тему «Строительство и архитектура»:
- Подвесные и натяжные потолки
- Организация системного управления реализацией капиталообразующего инвестиционного проекта при строительстве промышленного предприятия
- Строительство промышленного здания
- Ремонтная мастерская для хозяйств с парком 75 тракторов
- Проектирование промышленного здания механического цеха