Моделирование нагрева асинхронного двигателя

Заключение

В процессе дипломирования была решена задача определения параметров тепловой модели асинхронного двигателя. В основе последней лежит представление двигателя двумя коаксиальными цилиндрами. Внешний цилиндр представляет сталь сердечника статора, внутренний – медь обмоток статора. Процессы нагрева и охлаждения в двигателе в этом случае описываются системой дифференциальных

уравнений второго порядка. Коэффициенты теплоотдачи входящие в эту систему были определены путем преобразования эквивалентной тепловой схемы асинхронного двигателя закрытого исполнения, содержащей шесть узлов, в схему с двумя узлами. Преобразование тепловой схемы выполнялось для стационарного режима, так как коэффициенты теплоотдачи в переходном и стационарном режимах одинаковы.

Полученные результаты используются в компьютерной лабораторной работе «Моделирование нагрева асинхронного двигателя в различных режимах работы». Лабораторная работа выполнена в программной среде MatLab 6.1, и в ее приложении Simulink 4. Данная работа позволяет моделировать процессы нагрева и охлаждения асинхронного двигателя практически в любых режимах его работы. Изначально для моделирования предлагаются три основных режима работы асинхронного двигателя – S1, S2, S3, но так же имеется возможность задания произвольного режима работы средствами приложения Simulink.

Список использованных источников

1. Алекссев А.Е. Конструкция электрических машин. – М.: ГЭИ, 1949. – 562 с.

2. Борисенко А.И., Костиков А.И., Яковлев А.И. Охлаждение промышленных электрических машин. – М.: Энергоатомиздат, 1983. – 296 с.

3. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. – М.: Энергоатомиздат, 1981. – 346 с.

4. Сипайлов Г.А., Санников Д.И., Жадан В.А. Тепловые, гидравлические и аэродинамические расчеты в электрических машинах. – М.: Высш. шк., 1989. – 239 с.

5. Филиппов И.Ф. Теплообмен в электрических машинах. – Л.: Энергоатомиздат, 1986. – 256 с.

6. Ковалев В.З. Моделирование электротехнических комплексов и систем как совокупности взаимодействующих подсистем различной физической природы: Дисс. д-ра техн. наук: 05.09.03/ОмГТУ. – Омск, 2000. – 338 с.

7. Ключев В.И. Теория электропривода. – М.: Энергоатомиздат, 1985. – 560 с.

8. Михайлов О.П. Автоматизированный электропривод станков и промышленных роботов. – М.: Машиностроение, 1990. – 238 с.

9. Беспалов В.Я., Мощинский Ю.А., Цуканов В.И. Упрощенная математическая модель нестационарного нагрева и охлаждения обмотки статора асинхронного двигателя. // Электричество. – 2003. – №4. – С. 20–26.

10. Герман-Галкин С.Г. Компьютерное моделирование полупроводниковых систем в MatLab 6.0. – СПб.: Корона принт, 2001. – 320 с.

11. Синчук О.Н., Чумак В.В., Михайлов С.Л. Тепловая модель кранового АД для диагностирования и настройки цифровой защиты от перегрузок. // Электротехника. – 2003. – №3. – С. 61–65.

12. Бугаев Г.А., Леонтьев А.Н., Ерохин Е.Ю., Павлова Д.А. Математические модели нагрева и охлаждения асинхронных двигателей для микропроцессорного реле тепловой защиты. // Электротехника. – 2001. – №2. – С. 31–36.

13. Гольдберг О.Д., Гурин Я.С., Свириденко И.С. Проектирование электрических машин. – М.: Высш. шк., 1984. – 431 с.

14. Копылов И.П. Электрические машины. – М.: Высш. шк., 2000. – 607 с.

15. Домбровский В.В., Зайчик В.М. Асинхронные машины: Теория, расчет, элементы проектирования. – Л.: Энергоатомиздат, 1990. – 368 с.

16. Дьяконов В.П. MatLab 6/6.1/6.5+Simulink 4/5. Основы применения. Полное руководство пользователя. – М.: СОЛОН-Пресс, 2002. – 768 с.

17. Асинхронные двигатели серии 4А: Справочник/А.Э. Кравчик и др. – М.: Энергоатомиздат, 1982. – 504 с.

Приложение А

Текст m-файла, рассчитывающего параметры тепловой модели

%–1. Исходные данные–%

% Основные параметры

P2=11000;%Номинальная мощность на валу двигателя

KPD=[eps 0.8 0.87 0.88 0.88 0.87];%Коэффициент полезного действия

cosf=[eps 0.65 0.82 0.87 0.9 0.9];%Коэффициент мощности

U1_lin=380;%Номинальное линейное напряжение

n1=3000;%Синхронная частота вращения

m=3;%Количество фаз статора

h=132;%Высота оси вращения, мм

p=1;%Число пар полюсов

% Параметры станины

Dc=0.245;%Диаметр станины у основания ребер

l_svp=0.15;%Длина свисающей части станины со стороны привода

l_svv=0.15;% Длина свисающей части станины со стороны вентилятора

d_dsh=0;%Зазор между диффузором и щитом в месте крепления

Z_rs=12;%Количество ребер станины

h_rs=23*10^(-3);%Высота ребра станины

d_rs=0.002;%Толщина ребра станины

% Параметры вентилятора

D_v=0.214;%Внешний диаметр вентилятора

% Параметры статора

Da=0.225;%Внешний диаметр сердечника

D=0.13;%Внутренний диаметр сердечника

l_p=0.13;%Длина паза

Z1=24;%Число пазов статора

kc=0.97;%Коэффициент шихтовки

%Параметры паза статора

b1=0.0134;%Ширина паза статора у основания

b2=0.0102;%Ширина паза статора в вершине

h_p=0.0165;%Высота паза

k_zp=0.75;% Коэффициент заполнения паза

h_sh=0.0009;%Высота шлица

b_sh=0.004;%Ширина шлица

b_z=0.00656;%Ширина зубца

h_z=0.0165;%Высота зубца

%Параметры ротора

D_rot=0.129;%Внешний диаметр ротора

Z2=19;%Число пазов ротора

b_k=0.025;%Ширина короткозамыкающего кольца

a_k=0.023;%Высота короткозамыкающего кольца

b_l=0.041;%Ширина лопатки ротора

a_l=0.022;%Высота лопатки ротора

n_l=12;%Количество лопаток ротора

KPD_lr=0.6;%Коэффициент качества лопатки, рассматриваемой как ребро

d=0.6*10^(-3);%Толщина воздушного зазора между ротором и статором

%Параметры паза ротора

b1_rot=10.8*10^(-3);%Ширина паза ротора в вершине

b2_rot=7.1*10^(-3);%Ширина паза ротора у основания

h_p_rot=20.2*10^(-3);%Высота паза ротора

% Параметры обмотки статора

w_1=84;%Число витков в фазе обмотки

a=1;%Число параллельных ветвей в фазе обмотки статора

n=3;%Число элементарных проводников в эффективном

l_sr=0.772;%Средняя длина витка обмотки статора

l_lob=0.256;%Развернутая длина лобовой части с одной стороны

l_lobv=0.07;%Длина вылета лобовой части

d_i=1.28;%Диаметр изолированного элементарного проводника обмотки

k_p=0.9;%Коэффициент пропитки обмотки статора

k_obm=0.958;%Обмоточный коэффициент обмотки статора

d_okr=0;%Толщина окраски обмотки в лобовой части

T_sr=100;%Средняя температура обмотки, град

% Параметры изоляции

d_ip=0.25*10^(-3);%Толщина пазовой изоляции

% Коэффициенты, характеризующие физические свойства материалов

v=15.8*10^(-6);%Кинематическая вязкость воздуха

lam_v=0.03;%Коэффициент теплопроводности воздуха

lam_m=384;%Коэффициент теплопроводности меди

lam_a=189;%Коэффициент теплопроводности алюминия клетки

lam_st=47;% Коэффициент теплопроводности материала станины

lam_s=34;% Коэффициент теплопроводности стали пакета статора

lam_p=0.28;% Коэффициент теплопроводности пропиточного состава

lam_i=0.26;% Коэффициент теплопроводности изоляции проводов

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы