Моделирование нагрева асинхронного двигателя

Паспортные данные

1. Синхронная частота вращения n1, об/мин;

2. Количество пар полюсов p.

Параметры станины

1. Высота оси вращения h, мм;

2. Диаметр станины у основания ребер Dc, м;

3. Длина свисающей части станины со стороны привода lсв.пр, м;

4. Длина свисающей части станины со стороны вентилятора lсв.в, м;

5. Зазор между диффузором и подшипниковым щитом в мест

е крепления δд.щ, м;

6. Количество ребер станины zp;

7. Высота ребра станины hp, м;

8. Толщина ребра станины δр, м.

Параметры вентилятора

1. Внешний диаметр вентилятора Dвент, м.

Параметры статора

1. Внешний диаметр сердечника Da, м;

2. Внутренний диаметр сердечника D, м;

3. Длина паза lп, м;

4. Число пазов статора Z1;

5. Коэффициент шихтовки (заполнения пакета сталью) kш=0,97.

Параметры паза статора

1. Большая ширина паза b1, м;

2. Меньшая ширина паза b2, м;

3. Высота паза hп, м;

4. Коэффициент заполнения паза kз;

5. Высота шлица hш;

6. Ширина шлица bш, м;

7. Высота зубца hз, м;

8. Ширина зубца bз, м.

Параметры обмотки

1. Количество витков в обмотке фазы ω1;

2. Число параллельных ветвей а;

3. Средняя длина витка обмотки lср1, м;

4. Длина вылета лобовой части обмотки с одной стороны lл.в, м;

5. Диаметр изолированного проводника dи, мм;

6. Коэффициент пропитки обмотки kп;

7. Толщина окраски обмотки в лобовой части δокр, м;

Параметры пазовой изоляции

1. Толщина пазовой изоляции δи.п, м.

Параметры ротора

1. Внешний диаметр ротора Dрот, м;

2. Число пазов ротора Z2;

3. Ширина короткозамыкающего кольца bк, м;

4. Высота короткозамыкающего кольца aк, м;

5. Ширина лопатки ротора bл, м;

6. Высота лопатки ротора ал, м;

7. Количество лопаток ротора zл;

8. Коэффициент качества лопатки, рассматриваемой как ребро ηл;

9. Толщина воздушного зазора между ротором и статором δ, м.

Общие физические величины

1. Кинематическая вязкость воздуха ν, м2/с;

2. Коэффициент теплопроводности воздуха λв, Вт/(0С∙м);

3. Средняя температура обмотки Tср, 0С;

4. Коэффициент теплопроводности меди обмотки λм, Вт/(0С∙м);

5. Коэффициент теплопроводности алюминия клетки λа, Вт/(0С∙м);

6. Коэффициент теплопроводности материала станины λст, Вт/(0С∙м);

7. Коэффициент теплопроводности стали пакета статора λс, Вт/(0С∙м);

8. Коэффициент теплопроводности пропиточного состава обмотки λп, Вт/(0С∙м);

9. Коэффициент теплопроводности изоляции проводов λи, Вт/(0С∙м);

10. Коэффициент теплопроводности окраски обмотки в лобовой части λокр, Вт/(0С∙м).

Расчет теплоемкостей меди и стали

2.3.1 Определение теплоемкости меди

Теплоемкость меди равна:

, (2.91)

где mм – масса меди обмотки статора, кг;

см – удельная теплоемкость меди обмотки статора, Дж/(кг∙0С).

Масса меди обмотки статора:

, (2.92)

где m1 – число фаз обмотки статора;

lср1 – средняя длина витка обмотки статора, м;

w1 – число витков обмотки статора;

а – количество параллельных ветвей обмотки статора;

nэл – количество элементарных проводников в эффективном;

dпр – диаметр элементарного проводника, м;

γм – плотность меди обмотки, кг/м3.

Определение теплоемкости стали

, (2.93)

где mя – масса ярма статора, кг;

mз – масса зубцов статора, кг;

сст – удельная теплоемкость стали пакета статора, Дж/(кг∙0С).

Масса ярма статора:

, (2.94)

где γс – плотность стали пакета статора, кг/м3.

Масса зубцов статора:

. (2.95)

2.4.1 Потери в обмотке статора

При определении потерь в обмотке статора не учитываем увеличение активного сопротивления пазовой части обмотки статора за счет эффекта вытеснения тока.

Потери в лобовой и пазовой частях обмотки [4]:

, (2.96)

, (2.97)

где r1 – активное сопротивление фазы обмотки статора, Ом;

lл – длина лобовой части обмотки с одной стороны, м;

I1 – ток фазы обмотки статора, А.

Полные потери в меди обмотки статора:

. (2.98)

Активное сопротивление фазы обмотки статора:

, (2.99)

где ρм – удельное сопротивление меди обмотки статора при ожидаемой температуре, Ом∙м;

qэл=π(dэл/2)2 – площадь поперечного сечения элементарного проводника, м2.

Ток фазы обмотки статора:

, (2.100)

где Р2 – мощность на валу двигателя, Вт;

η – коэффициент полезного действия, о.е;

cosφ – коэффициент мощности;

U1 – фазное напряжение, В.

2.4.2 Потери в обмотке ротора

Потери в коротозамкнутой обмотке ротора определяются по формуле [13]:

, (2.101)

где r2 – активное сопротивление фазы обмотки ротора, Ом;

I2 – ток ротора, А.

Активное сопротивление фазы обмотки ротора:

, (2.102)

где rст – активное сопротивление стержня клетки, Ом;

rкл – активное сопротивление короткозамыкающего кольца, Ом;

Активное сопротивление стержня клетки:

, (2.103)

где ρа – удельное сопротивление алюминия обмотки ротора при ожидаемой температуре, Ом∙м.

Активное сопротивление короткозамыкающего кольца:

, (2.104)

где Dкл,ср – средний диаметр короткозамыкающего кольца, м;

qкл – площадь поперечного сечения короткозамыкающего кольца, м2.

Коэффициент приведения тока кольца к току стержня:

, (2.105)

где p – количество пар полюсов.

Ток в обмотке ротора:

, (2.106)

где ki – коэффициент, учитывающий влияние тока намагничивания и сопротивления обмоток на отношение I1/I2;

νi – коэффициент приведения токов.

Коэффициент, учитывающий влияние тока намагничивания и сопротивления обмоток на отношение I1/I2:

. (2.107)

Коэффициент приведения токов:

, (2.108)

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы