Исследование методов наблюдения доменов в тонких ферромагнитных пленках
Температурная зависимость плотности спонтанного магнитного момента М (Т) никеля показана на рисунке 12 [5, с. 99].
Рисунок 12 - Зависимость спонтанного магнитного момента Ni от температуры.
В учении о магнитоупорядоченных веществах важную роль играют п
редставления о магнитных фазовых переходах. Различают магнитные переходы 1-го и 2-го рода. Переходы 1-го рода характеризуются непрерывным изменением термодинамических функций, например свободной энергии, или термодинамического потенциала системы Ф (Т, Р, Н), где Т, Р, и Н – внешние термодинамические параметры, но испытывают скачок первые производные Ф´ (Т, Р, Н). Поскольку
(Ф/Т)Р, Н = Q
и
(Ф/Н)Т, Р = I,
то при переходе первого рода существуют скачки скрытой теплоты Q и намагниченности I.
Переходы 2-го рода характеризуются непрерывным изменением функций Ф (Т, Р, Н) и Ф´ (Т, Р, Н), однако скачки испытывают вторые производные Ф´´ (Т, Р, Н); это означает, что существуют скачки в точке перехода 2-го рода теплоемкости (Q/T)Р, Н = CР, Н и температурного коэффициента намагниченности (I/h)Т, Р. Рассматриваемые переходы являются магнитными переходами типа порядок – беспорядок (например, ферромагнетизм – парамагнетизм). На рисунке 13, б показано схематическое изменение самопроизвольной намагниченности I, при магнитных переходах 2-го рода типа порядок – беспорядок. В большинстве магнитоупорядоченных веществ в точках Кюри и Нееля возникают именно такие переходы.
Рисунок 13 - Магнитные фазовые переходы 1-го (а) и 2-го (б) рода.
Согласно Ландау магнитный переход 2-го рода можно приближенно описать с помощью разложения энергии ферромагнетика в ряд по четным степеням параметра магнитного упорядочения, за который можно принять намагниченность I.Для случая ферромагнетика имеем
W = W0 + aI2 + bI4 – IH (15)
где W0 – аддитивная постоянная,
а и b – некоторые коэффициенты (знак минус перед энергией поля IH означает, что магнитная система находится в стабильном состоянии). Из условия равновесия магнитной системы W/I = 0 получаем уравнение состояния ферромагнетика вблизи точки Кюри Тс.
αI + βI3 = H (16)
где α = 2а, β = 4b – новые коэффициенты, зависящие от Т и Р; в частности, можно коэффициент α разложить в ряд по разности Т – Т:
α =αТс (Т – Т ) (17)
В отсутствии магнитного поля I = Is. Из (16) и (17) имеем
I = - (αТc / β) (Т –Т) (18)
При достижении температуры Т = Т намагниченность Is = 0 и, следовательно, α = 0. Таким образом, равенство α = 0 может быть использовано для определения температуры Кюри. Последнее уравнение можно записать в виде:
Is = A (Т –Т)1/2 (19)
где
А = (αТс /b)1/2
При Т = Т, т.е. a = 0, из (16) имеем:
I = ВН 1/3 (20)
где В = (1/b)1/3. Присоединяя сюда соотношение
χ = С (Т – Т)-1 (21)
(закон Кюри – Вейсса, который справедлив при Т ≥ Т), мы получаем три уравнения для описания магнитного перехода в окрестности точки Кюри.
Однако эти уравнения весьма приближенны, особенно в узкой окрестности точки Кюри, т.е. в области |τ| =(Т – Т) / Т ≤ 10-4. В этой области возникают так называемые флуктуации магнитного порядка – критическое состояние вещества. Влияние этих флуктуаций в самой точке Т приводит к корреляции спинов, что должно быть учтено с помощью введения новых показателей, степеней в систему уравнений (19) – (21), а именно:
I = A (Т –Т)b, I = ВН 1/d, χ =С(Т –Т) (22)
где b, d и g - так называемые критические индексы магнитного перехода. Все термодинамические функции вблизи перехода испытывают резкие изменения (сингулярности), и поэтому эти индексы должны быть более высокими, чем дает термодинамика Ландау.
Априори можно утверждать, что между критическими индексами должна существовать количественная связь, так как все процессы, протекающие в критической области, взаимосвязаны. Оказывается, связь между ними довольно проста (закон подобия):
g = b (d - 1) (23)
Измерениями для Ni и некоторых ферритов установлено, что g = 1,3; b = 0,38; d = 4,42. Подставляя эти значения в закон подобия, можно убедиться, что этот закон удовлетворяется.
Отметим, что уравнение I = ВН 1/d является аналогом уравнения состояния жидкости:
r - rкр = а (Р – Ркр)1/d
где r - плотность, Р – давление; вблизи точки перехода (критической точки) r = rкр, Р = Ркр. Измерения показали, что вблизи критической точки (Т = Ткр) критический индекс d для системы жидкость – газ равен 4,2; т.е. приблизительно такой, как и для системы ферромагнетик – парамагнетик. Из этого следует, что результаты по изучению механизма фазовых переходов в магнитных веществах можно переносить на более сложные переходы, происходящие в твердых и жидких телах. Поэтому физики проявляют такой большой интерес к исследованию магнитных фазовых переходов.
Исследованиями установлено, что в небольшом числе магнитоупорядоченных веществ в точке Кюри происходит переход 1-го рода. В этом случае температурный ход самопроизвольной намагниченности, в отличие от перехода 2-го рода, при приближении к T обрывается скачком (рисунок 13, а). Такой переход был обнаружен в сплаве MnAs и некоторых других.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода