Исследование методов наблюдения доменов в тонких ферромагнитных пленках

Температурная зависимость плотности спонтанного магнитного момента М (Т) никеля показана на рисунке 12 [5, с. 99].

Рисунок 12 - Зависимость спонтанного магнитного момента Ni от температуры.

В учении о магнитоупорядоченных веществах важную роль играют п

редставления о магнитных фазовых переходах. Различают магнитные переходы 1-го и 2-го рода. Переходы 1-го рода характеризуются непрерывным изменением термодинамических функций, например свободной энергии, или термодинамического потенциала системы Ф (Т, Р, Н), где Т, Р, и Н – внешние термодинамические параметры, но испытывают скачок первые производные Ф´ (Т, Р, Н). Поскольку

(Ф/Т)Р, Н = Q

и

(Ф/Н)Т, Р = I,

то при переходе первого рода существуют скачки скрытой теплоты Q и намагниченности I.

Переходы 2-го рода характеризуются непрерывным изменением функций Ф (Т, Р, Н) и Ф´ (Т, Р, Н), однако скачки испытывают вторые производные Ф´´ (Т, Р, Н); это означает, что существуют скачки в точке перехода 2-го рода теплоемкости (Q/T)Р, Н = CР, Н и температурного коэффициента намагниченности (I/h)Т, Р. Рассматриваемые переходы являются магнитными переходами типа порядок – беспорядок (например, ферромагнетизм – парамагнетизм). На рисунке 13, б показано схематическое изменение самопроизвольной намагниченности I, при магнитных переходах 2-го рода типа порядок – беспорядок. В большинстве магнитоупорядоченных веществ в точках Кюри и Нееля возникают именно такие переходы.

Рисунок 13 - Магнитные фазовые переходы 1-го (а) и 2-го (б) рода.

Согласно Ландау магнитный переход 2-го рода можно приближенно описать с помощью разложения энергии ферромагнетика в ряд по четным степеням параметра магнитного упорядочения, за который можно принять намагниченность I.Для случая ферромагнетика имеем

W = W0 + aI2 + bI4 – IH (15)

где W0 – аддитивная постоянная,

а и b – некоторые коэффициенты (знак минус перед энергией поля IH означает, что магнитная система находится в стабильном состоянии). Из условия равновесия магнитной системы W/I = 0 получаем уравнение состояния ферромагнетика вблизи точки Кюри Тс.

αI + βI3 = H (16)

где α = 2а, β = 4b – новые коэффициенты, зависящие от Т и Р; в частности, можно коэффициент α разложить в ряд по разности Т – Т:

α =αТс (Т – Т ) (17)

В отсутствии магнитного поля I = Is. Из (16) и (17) имеем

I = - (αТc / β) (Т –Т) (18)

При достижении температуры Т = Т намагниченность Is = 0 и, следовательно, α = 0. Таким образом, равенство α = 0 может быть использовано для определения температуры Кюри. Последнее уравнение можно записать в виде:

Is = A (Т –Т)1/2 (19)

где

А = (αТс /b)1/2

При Т = Т, т.е. a = 0, из (16) имеем:

I = ВН 1/3 (20)

где В = (1/b)1/3. Присоединяя сюда соотношение

χ = С (Т – Т)-1 (21)

(закон Кюри – Вейсса, который справедлив при Т ≥ Т), мы получаем три уравнения для описания магнитного перехода в окрестности точки Кюри.

Однако эти уравнения весьма приближенны, особенно в узкой окрестности точки Кюри, т.е. в области |τ| =(Т – Т) / Т ≤ 10-4. В этой области возникают так называемые флуктуации магнитного порядка – критическое состояние вещества. Влияние этих флуктуаций в самой точке Т приводит к корреляции спинов, что должно быть учтено с помощью введения новых показателей, степеней в систему уравнений (19) – (21), а именно:

I = A (Т –Т)b, I = ВН 1/d, χ =С(Т –Т) (22)

где b, d и g - так называемые критические индексы магнитного перехода. Все термодинамические функции вблизи перехода испытывают резкие изменения (сингулярности), и поэтому эти индексы должны быть более высокими, чем дает термодинамика Ландау.

Априори можно утверждать, что между критическими индексами должна существовать количественная связь, так как все процессы, протекающие в критической области, взаимосвязаны. Оказывается, связь между ними довольно проста (закон подобия):

g = b (d - 1) (23)

Измерениями для Ni и некоторых ферритов установлено, что g = 1,3; b = 0,38; d = 4,42. Подставляя эти значения в закон подобия, можно убедиться, что этот закон удовлетворяется.

Отметим, что уравнение I = ВН 1/d является аналогом уравнения состояния жидкости:

r - rкр = а (Р – Ркр)1/d

где r - плотность, Р – давление; вблизи точки перехода (критической точки) r = rкр, Р = Ркр. Измерения показали, что вблизи критической точки (Т = Ткр) критический индекс d для системы жидкость – газ равен 4,2; т.е. приблизительно такой, как и для системы ферромагнетик – парамагнетик. Из этого следует, что результаты по изучению механизма фазовых переходов в магнитных веществах можно переносить на более сложные переходы, происходящие в твердых и жидких телах. Поэтому физики проявляют такой большой интерес к исследованию магнитных фазовых переходов.

Исследованиями установлено, что в небольшом числе магнитоупорядоченных веществ в точке Кюри происходит переход 1-го рода. В этом случае температурный ход самопроизвольной намагниченности, в отличие от перехода 2-го рода, при приближении к T обрывается скачком (рисунок 13, а). Такой переход был обнаружен в сплаве MnAs и некоторых других.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы