Исследование методов наблюдения доменов в тонких ферромагнитных пленках
Обменные силы, ответственные за ориентацию спинов в кристалле, могут давать только строго параллельную или антипараллельную структуру.
Оказалось, что это заключение справедливо только в тех случаях, когда нет резкого различия в энергиях обменного взаимодействия для соседних магнитно-активных ионов в кристаллических решетках с существенно отличающимися взаимными расстояниями по различным ося
м кристалла, т.е. когда нет резкой анизотропии этих расстояний [3, с. 64-67].
Рисунок 6 - Типичные примеры не коллинеарных атомных магнитных структур: а) антиферромагнитная треугольная; б) антиферромагнитная винтовая плоская; в) ферромагнитная винтовая по конической поверхности.
1.5 Опыты по определению носителя ферромагнетизма
Из чистых химических элементов ферромагнитными свойствами обладают железо, никель, кобальт, гадолиний. При очень низких температурах ферромагнитны эрбий, диспрозий, тулий, гольмий и тербий.
Самым распространенным ферромагнитным элементом является железо (от латинского ferrum – железо), отсюда и название – ферромагнитные тела, ферромагнетизм.
Ферромагнитными могут быть сплавы как из самих ферромагнитных элементов, так и их сплавы с неферромагнитными элементами. Кроме того, известны ферромагнитные сплавы из не ферромагнитных элементов. Такие сплавы носят название «гейслеровых».
Элементарными носителями магнетизма являются орбитальные и спиновые моменты электронов. Которые же из них, или те и другие, приводят к ферромагнетизму?
Ответ на этот вопрос был получен с помощью магнитно-механических опытов, основанных на следующем. Электрон вследствие вращения его вокруг ядра и вокруг своей оси, кроме магнитного момента, обладает также некоторым механическим моментом вращения. Под механическим моментом тела понимают величину, равную произведению его массы на скорость и на радиус вращения, т.е. механический момент
М = m·V·r (12)
где m – масса вращающегося тела,
V – его скорость,
r – расстояние этого тела от оси вращения.
Величина орбитального механического момента выражается формулой (3):
Р = n (h/2p)
где n – целое число (n = 1, 2, 3 …)
Свойство принимать не любые, а только некоторые определенные значения, распространяются и на другие характеристики атома. Так например, радиус орбиты электрона не может быть любым, а может принимать только некоторые значения. Вполне определенные значения могут принимать также энергия и скорость электрона и т.д. Вообще параметры, характеризующие свойства атома, изменяются не непрерывно, а «ступенчато».
Поэтому говорят, что одно из основных свойств атома – это дискретность его свойств, т.е. способность принимать не любые, а только некоторые избранные значения характеризующих его физических величин.
Что касается величины механического момента электрона, обусловленного вращением его вокруг своей оси (механический момент спина), то она всегда оказывается равной 1/2·h/2p, т.е. половине наименьшего орбитального механического момента.
Первый опыт определения носителя ферромагнетизма был осуществлен в 1916 г. Эйнштейном и Де-Гаазом, а затем многократно повторялся многими исследователями. Чтобы понять сущность этого опыта, рассмотрим некоторые примеры из механики. В механике известен закон, называемый законом сохранения момента количества движения. Этот закон гласит, что если на тело извне не действуют никакие вращательные силы, то момент количества движения или механический момент его остается величиной неизменной.
Вспомним, как акробат делает сальто (рисунок 7). Подпрыгнув и придав вращательное движение своему телу, он затем подбирает тело, поджимая руки и ноги. Этим самым уменьшается расстояние некоторых частей тела от оси, вокруг которой получил вращательное движение акробат. Так как извне при этом на него никакие вращательные силы не действуют, то механический момент его сохраняется, т.е. произведение массы тела на скорость и на радиус от оси вращения не меняется. Но радиус вращения уменьшился, поэтому при постоянной массе должна увеличиться скорость вращательного движения. И действительно, поджимая руки и ноги, акробат быстро переворачивается в воздухе и затем, выпрямляя корпус, замедляет вращательное движение и становятся на ноги (рисунок 7).
Рисунок 7 - Сальто.
Интересный и очень поучительный опыт можно провести на так называемой скамье Жуковского с велосипедным колесом. Скамья Жуковского представляет собой небольшую площадку, которая легко вращается около вертикальной оси. Если на такую площадку поставить человека, дав ему в руки быстро вращающееся на вертикальной оси велосипедное колесо, то такая система будет обладать некоторым механическим моментом.
Если теперь человек, стоя на скамейке, повернет ось велосипедного колеса на 1800, то по закону сохранения механического момента сам человек на скамье начнет вращаться в ту сторону, в которую ранее вращалось велосипедное колесо (рисунок 8).
Рисунок 8 - Опыт со скамьёй Жуковского
Опыт Эйнштейна и Де-Гааза подобен описанному выше опыту со скамьей Жуковского и велосипедным колесом.
В самом деле, если ферромагнетизм обусловлен орбитальными магнитными моментами электронов, то в сильно намагниченном железе они должны быть сориентированы одинаково. Плоскости орбит должны быть параллельны друг другу, и все электроны должны вращаться по орбитам в одну и ту же сторону. Дело обстоит так, как если бы в куске намагниченного железа большое количество маленьких велосипедных колес вращалось в одну и ту же сторону. Если теперь этот кусок железа перемагнитить, то, очевидно, все электроны по орбитам должны начать вращаться в противоположную сторону, что соответствует в опыте со скамьей Жуковского повороту оси велосипедного колеса на 1800. Мы уже видели, что в этом случае сама скамья вместе с человеком начинает вращаться в ту сторону куда раньше вращалось колесо. То же, очевидно, произойдет и с куском железа при перемагничивании. Перемагнитив кусок железа, мы заставляем электроны по орбитам вращаться в сторону, противоположную их первоначальному вращению. При этом сам кусок перемагниченного железа должен начать вращаться в ту сторону, куда прежде, до перемагничивания, вращались электроны по своим орбитам.
Перемагничивание образца (например, из железа) можно осуществить легко, если вспомнить, что электрический ток, протекая по проводнику, создает магнитное поле. Практически это делается так. Образец помещают в соленоид, через который пропускают достаточно сильный ток. Тогда внутри соленоида создается сильное магнитное поле и помещенный внутри него образец намагничивается. Для перемагничивания следует, очевидно, переменить направление тока в катушке.
Если внутри соленоида подвесить на нити железный цилиндр и его намагнитить пропусканием тока в соленоиде, то при изменении направления тока в соленоиде железный цилиндр перемагнитится и начнет, закручивая нить, поворачиваться в сторону, куда раньше вращались электроны. Следует отметить, что угол закручивая нити будет очень небольшой; чтобы его обнаружить, к нити прикрепляют очень легкое зеркальце и на сравнительно большом расстоянии наблюдают отклонение от него светового зайчика (рисунок 9).
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода