Экономико–математические методы в управлении
Вторая симплексная таблица:
Базис |
Сб |
А0 |
y1 70 |
y2 40 |
y3 50 |
y4 0 |
y5 0 |
y6 0 |
y4 |
0 |
23/8 |
0 |
43/8 |
23/8 |
1 |
0 |
-7/8 |
y5 |
0 |
13/8 |
0 |
1/8 |
13/8 |
0 |
1 |
-5/8 |
y1 |
70 |
7/8 |
1 |
3/8 |
7/8 |
0 |
0 |
1/8 |
245/4 |
0 |
-55/4 |
45/4 |
0 |
0 |
35/4 |
Третья симплексная таблица:
Базис |
Сб |
А0 |
y1 70 |
y2 40 |
y3 50 |
y4 0 |
y5 0 |
y6 0 |
Y2 |
40 |
23/43 |
0 |
1 |
23/43 |
8/43 |
0 |
-7/43 |
y5 |
0 |
67/43 |
0 |
0 |
67/43 |
-1/43 |
1 |
-26/43 |
y1 |
70 |
29/43 |
1 |
0 |
29/43 |
-3/43 |
0 |
8/43 |
2950/43 |
0 |
0 |
800/43 |
110/43 |
0 |
280/43 |
В последней таблице в строке Δ нет отрицательных элементов. В соответствии с критерием оптимальности точка максимума Smax = 2950/43 достигнута при значениях: y1 = 29/43; y2 = 23/43; y3 = 0.
По теореме двойственности: Fmin = Smax = 2950/43.
На основании правила соответствия между переменными, оптимальное решение прямой задачи:
y4 x1 = 110/43 y5 x2 = 0 y6 x3 = 280/43
Ответ: В смесь минимальной стоимости 2950/43 целесообразно включить 110/43 единиц продукта C1, 280/43 единиц продукта C3, а продукт C2 не включать.
Задание 2.2.
Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.
maxZ = 3.6x1 – 0.2x12 + 0.8x2 – 0.2x22
2x1 + x2 ≥ 10
x12 -10x1 + x2 ≤ 75
x2 ≥ 0
В данной задаче имеется нелинейная целевая функция с нелинейной системой ограничений. Графическая схема позволит определить положение точки оптимума.
Сначала необходимо преобразовать формулу целевой функции так, чтобы получить её графическое отображение. Воспользуемся методом выделения полного квадрата двучлена относительно x1 и x2, разделив левую и правую части формулы на -0.2:
-5Z = x12 -18x1 + x22 – 4x2
Добавим к левой и правой частям уравнения числа, необходимые для выделения полных квадратов двучлена в правой части выражения:
92 и 22 в сумме составляют 85:
85 – 5Z = (x1 – 9)2 + (x2 – 2)2
В результате получилась формула, позволяющая графически изобразить целевую функцию в виде линии уровня на плоскости X1OX2. Данные линии уровня представляют собой окружности с общим центром в точке O (9;2). Данная точка является точкой абсолютного экстремума целевой функции.
Для определения характера экстремума нужно провести анализ целевой функции на выпуклость/вогнутость. Для этого необходимо определить вторые частные производные и составить из них матрицу:
![]() | ![]() |
Z”x1x1 Z”x1x2 = -0.4 0
Z”x2x1 Z”x2x2 0 -0.4
Определим знаки главных миноров данной матрицы.
Главный минор первого порядка -0.4 < 0.
Главный минор второго порядка 0.16 > 0.
Т.к. знаки миноров чередуются, функция Z - строго вогнута. Экстремум вогнутых функций – max, следовательно в точке О у целевой функции находится абсолютный максимум.
Для построения области допустимых значений преобразуем второе неравенство системы ограничений:
x12 – 10x1 + x2 ≤ 75
x12 – 10x1 + 25 + x2 ≤ 100
(x1 – 5)2 + x2 ≤ 100
(x1 – 5)2 ≤ 100 – x2
Уравнение (x1 – 5)2 = 100 – x2 выразим через переменные x1* и x2*:
x1* = x1 – 5
x2* = 100 – x2
Уравнение примет вид: x1*2 = x2*.
В системе координат X1*O*X2* данное уравнение является каноническим уравнением параболы.
На рисунке область допустимых значений – ограниченная часть плоскости ABCD. Из полученного графика видно, что точка абсолютного максимума Z лежит внутри ОДР. Следовательно, целевая функция принимает максимальное значение в этой точке:
max Z = Z(O) = Z(9;2) = 17
Задание 3.1
После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:
1) требуется профилактический ремонт;
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели