Практическое применение теории игр
.
7. Среднее число требований, находящихся в обслуживающей системе, обслуживаемых и ожидающих обслуживания:
или
8.Среднее число свободных обслуживающих каналов
eight=59 src="images/referats/5445/image066.png">.
9.Коэффициент простоя обслуживающего канала:
II. Практическое применение теории игр в задачах моделирования экономических процессах
Пример №1
На базе торговой фирмы имеется n типов товара ассортиментного минимума. В магазин фирмы должен быть завезен только один из этих типов товара. Если товар типа jбудет пользоваться спросом, то магазин от его реализации получит прибыль . Если же этот товар не будет пользоваться спросом, то издержки на его хранение принесут магазину убыток .Требуется выбрать тип товара, который целесообразно завезти в магазин.
В условиях неопределенного покупательского спроса конфликтная ситуация товароснабжения формализуется матричной игрой. Пусть первый игрок — магазин, второй игрок — покупательский спрос. Каждый из игроков имеет по n стратегий. Завоз i-го товара — i-я. стратегия первого игрока, спрос на j-й товар — j-я стратегия второго игрока. Тогда матрица выигрышей первого игрока имеет вид квадратной матрицы n-го порядка:
Пример №2
Матрица игры имеет вид:
Минимальный элемент первой строки (первой стратегии первого игрока) равен 2, второй — 5, третьей — 4; максимальное значение из этих величин равно 5. Максимальный элемент первого столбца (первой стратегии второго игрока) равен 10, второго — 10; третьего — 5, четвертого — 14, пятого — 12; минимальное значение из них равно 5. Следовательно, данная игра имеет седловую точку (2, 3) и задача разрешима в чистых стратегиях. Придерживаясь чисто второй стратегии, первый игрок обеспечивает себе выигрыш, не меньший 5; второй игрок, применяя чистую третью стратегию, проигрывает не более 5. Обе стратегии j = 2 и j = 3 являются оптимальными для первого и второго игроков, при этом цена игры V = 5.
Пример №3
Диспетчер автобусного парка (ЛПР) в месяцы в конце каждой недели должен принять решение о целесообразности выделения дополнительных автобусов на загородный маршрут. ЛПР имеет три варианта решений: увеличить количество автобусов на 10 (стратегия ) увеличить это количество на 5 (стратегия Р2) или оставить без изменения обычное число автобусов на линии (стратегия Р3). Возможны два состояния погоды: —Q1 плохая погода,Q2 - хорошая погода, причем в момент принятия решения нет возможности определить ожидаемое состояние погоды. Если в выходные дни будет хорошая погода и много желающих выехать за город, а выделено мало автобусов, то парк понесет убытки, связанные с недополученной прибылью. Если же выделены дополнительные автобусы, а погода окажется плохой, то возникнут потери вследствие эксплуатации незаполненных автобусов.
Пусть, на основе анализа статистических данных за определенный период установлена функция потерь для возможных комбинаций состояний природы и решений ЛПР в виде матрицы игры А (Рi,Qi), в которой отрицательные значения показывают дополнительную прибыль, а положительные – потери:
Q1 Q2
Если нет сведений о вероятностях различных состояний погоды, то по критерию Вальда и по критерию Сэвиджа оптимальной является стратегия Р2. По критерию Гурвица при “коэффициенте пессимизма” q=1 оптимальной окажется стратегия Р2, а при q=0 — стратегия Р1.
Пример №4
Швейное предприятие, выпускающее детские платья и костюмы, реализует свою продукцию через фирменный магазин. Сбыт продукции зависит от состояния погоды. Но данным прошлых наблюдений предприятие в течении апреля — мая в условиях теплой погоды может реализовать 600 костюмов и 1975 платьев, а при прохладной погоде 1000 костюмов и 625 платьев. Известно, что затраты на единицу продукции в течение указанных месяцев составили для костюмов 27 руб., для платьев 8 руб., а цена реализации равна соответственно 48 руб. и 16 руб. (цифры условные).
Задача заключается в максимизации средней величины прибыли от реализации выпущенной продукции с учетом неопределенности погоды в рассматриваемые месяцы. Таким образом, служба маркетинга предприятия должна в этих условиях определить оптимальную стратегию предприятия, обеспечивающую при любой погоде определенный средний доход. Решим эту задачу методами теории игр, игра в этом случае будет относиться к типу игр с природой.
Предприятие располагает в этих условиях двумя чистыми стратегиями: стратегия А — в расчете на теплую погоду и стратегия Б — в расчете на холодную погоду. Природу будим рассматривать как второго игрока также с двумя стратегиями: прохладная погода (стратегия В) и теплая погода (стратегия Г). Если предприятие выберет стратегию А, то в случае прохладной погоды (стратегия природы В) доход составит
600(48 - 27) + 625(16 - 8) - (1975 - 625)8 = 6 800 руб.,
а в случае теплой погоды (стратегия природы Г) доход равен
600(48 - 27) + 1 975(16 - 8) = 28 400 руб.
Если предприятие выберет стратегию Б, то реализация продукции в условиях прохладной погоды даст доход
1 000(48 - 27) + 625(16 - 8) = 26 000 руб.,
а в условиях теплой погоды
600(48 - 27) + 625(16 - 8) - (1 000 - 600)27 = 6 800
Следовательно, матрица данной игры (платежная матица) имеет вид:
Первая и вторая строки этой матрицы соответствуют стратегиям А и Б предприятия, а первый и второй стратегиям В и Г природы.
По платежной матрице видно, что первый игрок (предприятие) никогда не получит доход меньше 6800. Но если погодные условия совпадают с выбранной стратегией, то выручка (выигрыш) составит 26 000 или 28 400. Отсюда можно сделать вывод, что в условиях неопределенности погоды наибольший гарантированный доход предприятие обеспечит, если будет попеременно применять то А, то стратегию Б. Такая стратегия называется смешанной. Оптимизация смешанной стратегии позволит первому игроку всегда получать выигрыша независимо от стратегии второго игрока.
Пусть х означает частоту применения первым игроком стратегии А, тогда частота применения им стратегии Б равна (1 - х). В случае оптимальной смешанной стратегии первый игрок (предприятие) получит и при стратегии В (холодная погода), и при стратегии Г (теплая погода) второго игрока одинаковый средний доход:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели