Постановка и основные свойства транспортной задачи

Следовательно, это же относится и к левой части этого равенства, т.е. среди

векторов найдется хотя бы один вектор вида с

коэффициентом . Перенеся его в правую чатсть равенства (1.22), получим

, (1.23)

где . Но поскольку , компонента с номером правой части (1.23) отлична от нуля. Поэтому среди векторов левой части (1.23) найдется хотя бы один вектор вида , для которого . Перенося его в правую часть (1.23), находим

(1.24)

где

Этот процесс переноса векторов в правую часть можно продолжить аналогичным образом и дальше. Допустим, что уже проведено (2k-1) шагов. Тогда имеет место соотношение

(1.25)

где

Возможные два случая:

1) при некотором

2) .

В первом случае процесс переноса заканчивается, причем из векторов в правой части (1.25) можно образовать замкнутый маршрут. Таким маршрутом является

Во втором случае процесс переноса продолжается, и поскольку , среди векторов Рij, где (i, j) обязательно найдется вектор с коэффициентом .

Описанный процесс переноса не может длится бесконечно, так как все вектора, переносимые вправо, различны. Поэтому через конечное число шагов мы обязательно столкнемся со случаем 1, который, как показано выше, ведет к образованию замкнутого маршрута.

Итак, допустив, что система векторов линейно зависима, мы пришли к противоречию с условием теоремы, согласно которому из коммуникаций системы R нельзя составить замкнутый маршрут. Остается принять, что система R состоит из линейно независимых векторов.

Достаточность условий теоремы доказана.

Назовем коммуникацию Т-задачи основной коммуникацией плана Х, если Тогда, используя теорему 3.4, можно сформулировать следующий признак проверки произвольного плана на опорность.

План Т-задачи является опорным (базисным), если из его основных коммуникаций нельзя составить замкнутый маршрут.

Теорема 5. Вектор является линейной комбинацией векторов системы R тогда и только тогда, когда из векторов этой системы можно составить маршрут, соединяющий пункты Ak и . Если этот маршрут имеет вид

то

. (1.26)

Доказательство этой теоремы основано на теореме 3.4. Пусть выражен в виде линейной комбинации векторов системы R. Добавив к ней вектор , получим систему линейно зависимых векторов. Тогда в силу теоремы 3.4 появляется замкнутый маршрут . Этот замкнутый маршрут должен содержать коммуникацию и, следовательно, все остальные коммуникации должны соединить и .

Тогда

.

Перенеся в правую часть, получим выражение (1.26), что и требовалось доказать.

 

1

2

3

4

5

6

i /j

1

     

+

1

 

1

1

       

2

X =

 

1

1

     

3

     

1

1

   

4

       

1

1

1

5

               
 

Рис. 3.3.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы