Постановка и основные свойства транспортной задачи
Следовательно, это же относится и к левой части этого равенства, т.е. среди
векторов найдется хотя бы один вектор вида с
коэффициентом . Перенеся его в правую чатсть равенства (1.22), получим
, (1.23)
где . Но поскольку , компонента с номером правой части (1.23) отлична от нуля. Поэтому среди векторов левой части (1.23) найдется хотя бы один вектор вида , для которого . Перенося его в правую часть (1.23), находим
(1.24)
где
Этот процесс переноса векторов в правую часть можно продолжить аналогичным образом и дальше. Допустим, что уже проведено (2k-1) шагов. Тогда имеет место соотношение
(1.25)
где
Возможные два случая:
1) при некотором
2) .
В первом случае процесс переноса заканчивается, причем из векторов в правой части (1.25) можно образовать замкнутый маршрут. Таким маршрутом является
Во втором случае процесс переноса продолжается, и поскольку , среди векторов Рij, где (i, j) обязательно найдется вектор с коэффициентом .
Описанный процесс переноса не может длится бесконечно, так как все вектора, переносимые вправо, различны. Поэтому через конечное число шагов мы обязательно столкнемся со случаем 1, который, как показано выше, ведет к образованию замкнутого маршрута.
Итак, допустив, что система векторов линейно зависима, мы пришли к противоречию с условием теоремы, согласно которому из коммуникаций системы R нельзя составить замкнутый маршрут. Остается принять, что система R состоит из линейно независимых векторов.
Достаточность условий теоремы доказана.
Назовем коммуникацию Т-задачи основной коммуникацией плана Х, если Тогда, используя теорему 3.4, можно сформулировать следующий признак проверки произвольного плана на опорность.
План Т-задачи является опорным (базисным), если из его основных коммуникаций нельзя составить замкнутый маршрут.
Теорема 5. Вектор является линейной комбинацией векторов системы R тогда и только тогда, когда из векторов этой системы можно составить маршрут, соединяющий пункты Ak и . Если этот маршрут имеет вид
то
. (1.26)
Доказательство этой теоремы основано на теореме 3.4. Пусть выражен в виде линейной комбинации векторов системы R. Добавив к ней вектор , получим систему линейно зависимых векторов. Тогда в силу теоремы 3.4 появляется замкнутый маршрут . Этот замкнутый маршрут должен содержать коммуникацию и, следовательно, все остальные коммуникации должны соединить и .
Тогда
.
Перенеся в правую часть, получим выражение (1.26), что и требовалось доказать.
1 |
2 |
3 |
4 |
5 |
6 |
i /j | |
|
1 |
|
+ |
1 | |||
1 |
1 |
2 | |||||
X = |
1 |
1 |
3 | ||||
1 |
1 |
4 | |||||
1 |
1 |
1 |
5 | ||||
Рис. 3.3. |
Другие рефераты на тему «Экономико-математическое моделирование»:
- Экономико-математическое моделирование и прогнозирование в спортивной индустрии
- Построение и анализ однофакторной эконометрической модели
- Применение экономико-математических методов при строительстве дорог и трубопроводов
- Исследование экономико-математических моделей
- Математические методы и модели исследования операций
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели