Постановка и основные свойства транспортной задачи
Задачу (3.1.15) приводят к обычной Т-задаче введением фиктивного пункта производства Аm+1, с объемом производства и транспортными издержками В таком случае Т-задача будет иметь вид
минимизировать
при условиях
В найденном решении хопт полагаем все перевозки из фиктивного пункта Аm+1 равными нулю, т.е. .
Рассмотрим теперь второй случай. Введем фиктивный пункт Bn+1 с объемом спроса . Пусть - это убытки (штраф) в пункте Аі за единицу невывезенного продукта. Обозначим через сии,n+1 = удельные транспортные издержки на перевозку единицы продукта с Аі в Вn+1. Тогда соответствующая Т-задача запишется так:
минимизировать (1.16)
при условиях
(1.17) – (1.18)
В найденном решении все перевозки в фиктивный пункт Вn+1 считают равными нулю.
Опорные планы Т-задачи
Опорным (базисным) планом Т-задачи называют любое ее допустимое, базисное решение. Понятие опорного плана имеет наглядную геометрическую интерпретацию.
Последовательность коммуникаций
(1.19)
называют маршрутом, соединяющим пункты (рис. 2).
…
| |||
| |||
.
Рис. 2
Используя маршрут, составленный из коммуникаций, можно осуществить перевозку продукта из пункта в пункт , проходя через пункты .
В процессе этого движения коммуникации, стоящие на четных местах в (1.19), будут пройдены в противоположном направлении.
Маршрут (1.19), к которому добавлена коммуникация называется замкнутым маршрутом или циклом.
Способ проверки произвольного плана Т-задачи на опорность, основан на следующих двух теоремах (прямой и обратной).
Теорема 4. Система, составленная из векторов Т-задачи, является линейно независимой тогда и только тогда, когда из коммуникаций, соответствующих этим векторам, нельзя составить замкнутый маршрут.
Доказательство. Необходимость. Пусть векторы линейно независимы. Если бы существовал замкнутый маршрут из коммуникаций и , то, очевидно, начиная движение из пункта и последовательно проходя все пункты по последней коммуникации мы вернемся в начальный пункт . Тогда справедливое равенство
(1.20)
которое указывает на линейную зависимость векторов
.
Полученное противоречие доказывает необходимость условий теоремы 4.
Достаточность. Допустим, что из коммуникаций, отвечающих векторам системы R, нельзя составить замкнутый маршрут. Докажем, что в таком случае R – линейно независимая система. Если предположить противное, т.е. линейную зависимость векторов системы R, то существуют такие числа , среди которых не все нули, для которых выполняется условие
. (1.21)
Пусть, например . Перенесем тогда соответствующий вектор вправо и получим
, (1.22)
где Е1 образуется вычеркиванием в Е пары индексов (). Компонента с номером в правой части (3.1.22) не равна нулю.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели