Постановка и основные свойства транспортной задачи
Третья итерация. Первый этап.
|
| op > |
|
|
| |||||||||
|
|
|
-1 |
2 |
+1 |
0 |
0 |
0 |
3 | |||||
С2 = |
5 |
3 |
|
|
|
С2 = |
4 |
2 |
0 |
0 | ||||
|
|
1 |
-1 |
0 |
+1 |
0 |
1 |
0 |
1 | |||||
-1 |
-1 |
Так как в матрице С3 нет отрицательных элементов, план Х2 – оптимальный.
Венгерский метод для транспортной задачи
Рассмотренная выше задача о назначениях представляет собой частный случай Т-задачи, когда . Поэтому венгерский метод, применимый для решения транспортной задачи специального вида, можно распространить на общий случай Т-задачи.
Пусть требуется решить Т-задачу следующего вида
минимизировать
при условиях
Алгоритм решения Т-задачи, основанный на венгерском методе, состоит из предварительного этапа и конечного числа однотипных итераций.
В результате предварительного этапа вычисляют матрицу , элементы которой удовлетворяют следующим условиям:
, (1.3.1)
. (1.3.2)
Если в условиях (1.3.1), (1.3.2) строгие равенства, то матрица Х0 является решением Т-задачи.
Матрицу, построенную в результате k-й итерации, обозначим . Обозначим также
. (1.3.3)
Величина называется суммарной невязкой для матрицы . Она характеризует близость к искомому плану Т-задачи. Итерации проводятся до тех пор, пока величина не станет равна нулю.
Описание алгоритма Венгерского метода
Предварительный этап. В каждом из столбцов матрицы транспортных издержек отыскивают минимальный элемент, который вычитают из всех элементов этого столбца. Получают матрицу С'. Далее в каждой строке матрицы С' выбирают минимальный элемент и вычитают его из всех элементов рассматриваемой строки. Приходят к матрице С0 (С0 ~ C), все элементы которой неотрицательны, причем в каждой строке и столбце С0 имеем по крайней мере, один нуль. Строят матрицу Х0 так, чтобы ее ненулевые элементы были расположены в позициях нулей матрицы С0.
Пусть - номер строки, в которой расположен k-й нуль j-го столбца матрицы С0. Тогда элементы первого столбца матрицы Х0 определяют по рекуррентной формуле
(3.3.4)
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели