Многомерный статистический анализ

Асимптотическое распределение прогностической функции. Из формул (5) и (6) следует, что

т.е. рассматриваемая оценка прогностической функции является несмещенной. Поэтому

При этом, поскольку погрешности независимы в совокупности и t=24 src="images/referats/5472/image027.png">, то

Таким образом,

Итак, оценка является несмещенной и асимптотически нормальной. Для ее практического использования необходимо уметь оценивать остаточную дисперсию

Оценивание остаточной дисперсии. В точках tk , k = 1,2,…,n, имеются исходные значения зависимой переменной xk и восстановленные значения x*(tk). Рассмотрим остаточную сумму квадратов

В соответствии с формулами (5) и (6)

Найдем математическое ожидание каждого из слагаемых:

Из сделанных ранее предположений вытекает, что при имеем следовательно, по закону больших чисел статистикаSS/n является состоятельной оценкой остаточной дисперсии .

Получением состоятельной оценкой остаточной дисперсии завершается последовательность задач, связанных с рассматриваемым простейшим вариантом метода наименьших квадратов. Не представляет труда выписывание верхней и нижней границ для прогностической функции:

где погрешность имеет вид

Здесь p - доверительная вероятность, U(p), как и в главе 4 - квантиль нормального распределения порядка (1+р)/2, т.е.

При p= 0,95 (наиболее применяемое значение) имеем U(p) = 1,96. Для других доверительных вероятностей соответствующие значения квантилей можно найти в статистических таблицах (см., например, наилучшее в этой сфере издание [1]).

Сравнение параметрического и непараметрического подходов. Во многих литературных источниках рассматривается параметрическая вероятностная модель метода наименьших квадратов. В ней предполагается, что погрешности имеют нормальное распределение. Это предположение позволяет математически строго получить ряд выводов. Так, распределения статистик вычисляются точно, а не в асимптотике, соответственно вместо квантилей нормального распределения используются квантили распределения Стьюдента, а остаточная сумма квадратов SS делится не на n, а на (n-2). Ясно, что при росте объема данных различия стираются.

Рассмотренный выше непараметрический подход не использует нереалистическое предположение о нормальности погрешностей (см. начало главы 4) Платой за это является асимптотический характер результатов. В случае простейшей модели метода наименьших квадратов оба подхода дают практически совпадающие рекомендации. Это не всегда так, не всегда два подхода бают близкие результаты. Напомним, что в задаче обнаружения выбросов методы, опирающиеся на нормальное распределение, нельзя считать обоснованными, и обнаружено это было с помощью непараметрического подхода (см. главу 4).

Общие принципы. Кратко сформулируем несколько общих принципов построения, описания и использования эконометрических методов анализа данных. Во-первых, должны быть четко сформулированы исходные предпосылки, т.е. полностью описана используемая вероятностно-статистическая модель. Во-вторых, не следует принимать предпосылки, которые редко выполняются на практике. В-третьих, алгоритмы расчетов должны быть корректны с точки зрения математико-статистической теории. В-четвертых, алгоритмы должны давать полезные для практики выводы.

Применительно к задаче восстановления зависимостей это означает, что целесообразно применять непараметрический подход, что и сделано выше. Однако предположение нормальности, хотя и очень сильно сужает возможности применения, с чисто математической точки зрения позволяет продвинуться дальше. Поэтому для первоначального изучения ситуации, так сказать, "в лабораторных условиях", нормальная модель может оказаться полезной.

Пример оценивания по методу наименьших квадратов. Пусть даны n=6 пар чисел (tk , xk), k = 1,2,…,6, представленных во втором и третьем столбцах табл.1. В соответствии с формулами (2) и (4) выше для вычисления оценок метода наименьших квадратов достаточно найти суммы выражений, представленных в четвертом и пятом столбцах табл.1.

Табл.1. Расчет по методу наименьших квадратов при построении

линейной прогностической функции одной переменной

i

ti

xi

()2

1

1

12

1

12

3,14

12,17

-0,17

0,03

2

3

20

9

60

9,42

18,45

1,55

2,40

3

4

20

16

80

12,56

21,59

-1,59

2,53

4

7

32

49

224

21,98

31,01

0,99

0,98

5

9

35

81

315

28,26

37,29

-2,29

5,24

6

10

42

100

420

31,40

40,43

1,57

2,46

34

161

256

1111

   

0,06

13,64

5,67

26,83

42,67

185,17

       

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы