Многомерный статистический анализ
Другое направление опирается на опыт технических исследований, экономики, маркетинговых исследований, социологии, медицины. Типичные задачи - техническая и медицинская диагностика, а также, например, разбиение на группы отраслей промышленности, тесно связанных между собой, выделение групп однородной продукции. Обычно используются такие термины, как «распознавание образов» или «дискриминантный а
нализ». Это направление обычно опирается на математические модели; для проведения расчетов интенсивно используется ЭВМ. Однако относить его к математике столь же нецелесообразно, как астрономию или квантовую механику. Рассматриваемые математические модели можно и нужно изучать на формальном уровне, и такие исследования проводятся. Но направление в целом сконцентрировано на решении конкретных задач прикладных областей и вносит вклад в технические или экономические науки, медицину, социологию, но, как правило, не в математику. Использование математических методов как инструмента исследования нельзя относить к чистой математике.
В 60-х годах XX века внутри прикладной статистики достаточно четко оформилась область, посвященная методам классификации. Несколько модифицируя формулировки М. Дж. Кендалла и А. Стьюарта 1966 г. (см. русский перевод [7, с.437]), в теории классификации выделим три подобласти: дискриминация (дискриминантный анализ), кластеризация (кластер-анализ), группировка. Опишем эти подобласти.
В дискриминантном анализе классы предполагаются заданными - плотностями вероятностей или обучающими выборками. Задача состоит в том, чтобы вновь поступающий объект отнести в один из этих классов. У понятия «дискриминация» имеется много синонимов: диагностика, распознавание образов с учителем, автоматическая классификация с учителем, статистическая классификация и т.д.
При кластеризации и группировке целью является выявление и выделение классов. Синонимы: построение классификации, распознавание образов без учителя, автоматическая классификация без учителя, таксономия и др. Задача кластер-анализа состоит в выяснении по эмпирическим данным, насколько элементы "группируются" или распадаются на изолированные "скопления", "кластеры"(от cluster (англ.) - гроздь, скопление). Иными словами, задача - выявление естественного разбиения на классы, свободного от субъективизма исследователя, а цель - выделение групп однородных объектов, сходных между собой, при резком отличии этих групп друг от друга.
При группировке, наоборот, «мы хотим разбить элементы на группы независимо от того, естественны ли границы разбиения или нет» [7, с.437]. Цель по-прежнему состоит в выявлении групп однородных объектов, сходных между собой (как в кластер-анализе), однако «соседние» группы могут не иметь резких различий (в отличие от кластер-анализа). Границы между группами условны, не являются естественными, зависят от субъективизма исследователя. Аналогично при лесоустройстве проведение просек (границ участков) зависит от специалистов лесного ведомства, а не от свойств леса.
Задачи кластеризации и группировки принципиально различны, хотя для их решения могут применяться одни и те же алгоритмы. Важная для практической деятельности проблема состоит в том, чтобы понять, разрешима ли задача кластер-анализа для конкретных данных или возможна только их группировка, поскольку они достаточно однородны и не разбиваются на резко разделяющиеся между собой кластеры.
Как правило, в математических задачах кластеризации и группировки основное - выбор метрики, расстояния между объектами, меры близости, сходства, различия. Хорошо известно, что для любого заданного разбиения объектов на группы и любого e > 0 можно указать метрику такую, что расстояния между объектами из одной группы будут меньше e, а между объектами из разных групп - больше 1/e. Тогда любой разумный алгоритм кластеризации даст именно заданное разбиение.
Ситуация осложняется использованием одного и того же термина в разных смыслах. Термином "классификация" (и термином "диагностика") обозначают, по крайней мере, три разные вещи: процедуру построения классификации (и выделение классов, используемых при диагностике), построенную классификацию (систему выделенных классов) и процедуру ее использования (правила отнесения вновь поступающего объекта к одному из ранее выделенных классов). Другими словами, имеем естественную триаду: построение – изучение – использование классификации.
Как уже отмечалось, для построения системы диагностических классов используют разнообразные методы кластерного анализа и группировки объектов. Наименее известен второй член триады – изучение отношений эквивалентности, полученных в результате построения системы диагностических классов. Статистический анализ полученных, в частности экспертами, отношений эквивалентности - часть статистики бинарных отношений и тем самым - статистики объектов нечисловой природы. Помимо общих результатов этой области эконометрики и прикладной статистики, представляют интерес частные результаты, полученные специально для отношений эквивалентности (см. главу 8)).
Диагностика в узком смысле слова (процедура использования классификации, т.е. отнесения вновь поступающего объекта к одному из выделенных ранее классов) - предмет дискриминантного анализа. Отметим, что с точки зрения статистики объектов нечисловой природы дискриминантный анализ является частным случаем общей схемы регрессионного анализа, соответствующим ситуации, когда зависимая переменная принимает конечное число значений, а именно - номера классов, а вместо квадрата разности стоит функция потерь от неправильной классификации. Однако есть ряд специфических постановок, выделяющих задачи диагностики среди всех регрессионных задач.
О построении диагностических правил. Начнем с обсуждения одного распространенного заблуждения. Иногда рекомендуют сначала построить систему диагностических классов, а потом в каждом диагностическом классе отдельно проводить регрессионный анализ (в классическом смысле) или применять иные методы многомерного статистического анализа. Однако обычно забывают, что при этом нельзя опираться на вероятностную модель многомерного нормального распределения, так как распределение результатов наблюдений, попавших в определенный кластер, будет отнюдь не нормальным, а усеченным нормальным (усечение определяется границами кластера).
Процедуры построения диагностических правил делятся на вероятностные и детерминированные. К первым относятся так называемые задачи расщепления смесей. В них предполагается, что распределение вновь поступающего случайного элемента является смесью вероятностных законов, соответствующих диагностическим классам. Как и при выборе степени полинома в регрессии (см. предыдущий пункт настоящей главы), при анализе реальных социально-экономических данных встает вопрос об оценке числа элементов смеси, т.е. числа диагностических классов. Были изучены результаты применения обычно рекомендуемого критерия Уилкса для оценки числа элементов смеси. Оказалось (см. статью [8]), что оценка с помощью критерия Уилкса не является состоятельной, асимптотическое распределение этой оценки – геометрическое, как и в случае задачи восстановления зависимости в регрессионном анализе (см. выше). Итак, продемонстрирована несостоятельность обычно используемых оценок. Для получения состоятельных оценок достаточно связать уровень значимости в критерии Уилкса с объемом выборки, как это было предложено и для задач регрессии.
Другие рефераты на тему «Экономико-математическое моделирование»:
- Построение моделей статики по методике активного эксперимента
- Составление стоимостного межотраслевого баланса
- Эконометрическое моделирование - расчет коэффициентов корреляции и регрессии, анализ одномерного временного ряда
- Корреляционный анализ
- Двухкритериальные модели управления портфельными инвестициями с учетом риска
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели